--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - nielsr/funsd-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: pasha results: - task: name: Token Classification type: token-classification dataset: name: nielsr/funsd-layoutlmv3 type: nielsr/funsd-layoutlmv3 config: pasha split: test args: pasha metrics: - name: Precision type: precision value: 0.8791325986491291 - name: Recall type: recall value: 0.890850144092219 - name: F1 type: f1 value: 0.8849525854356771 - name: Accuracy type: accuracy value: 0.9095949855351977 --- # pasha This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the nielsr/funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.6479 - Precision: 0.8791 - Recall: 0.8909 - F1: 0.8850 - Accuracy: 0.9096 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 2.13 | 100 | 0.6479 | 0.8791 | 0.8909 | 0.8850 | 0.9096 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.2