miki030 commited on
Commit
f960dee
1 Parent(s): a5959dd

Upload 6 files

Browse files
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f34e9a90430>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f34e9a904c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f34e9a90550>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f34e9a905e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f34e9a90670>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f34e9a90700>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f34e9a90790>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f34e9a90820>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f34e9a908b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f34e9a90940>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f34e9a909d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f34e9a90a60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f34e9a91900>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 2031616,
47
+ "_total_timesteps": 2000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1679916065274815029,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL21pa2kvLmxvY2FsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9taWtpLy5sb2NhbC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMj9Tt71oe66FoxM+kpH7DV9WY5cyPAswAAgD8AAIA/ZmIFvEghhLreAk06wFXeNez7GDvyXG65AACAPwAAgD8zSgy9lgCYP7KFir35Q0O/kBh+veJ92b0AAAAAAAAAALN5HT1n5AS9I4MKvvbnB7w7Hws9engkPgAAgD8AAIA/AODQOh9x4Lv1TDc+QlylPILNIjxzaoA7AACAPwAAgD86nVI+/ruDPwgzgz4Ta/e+L1L/PhELnz4AAAAAAAAAABpPWj1PgQc9EwyOvnQsqL7p0iC+2FFGvgAAAAAAAAAAZr20PKmHM7zS9oq9putUPX5moj22eCs8AACAPwAAgD+a59Q84cCfuuYZezkG3Ws06fqEue6OkLgAAIA/AACAP9pQpr1rv3k/CIwTvjuxhr8s7UK+g+dpvQAAAAAAAAAAmh0VPI/qfLqai3O2+tNYsQLDCLtMF5Q1AACAPwAAgD+mP7Q97bi4P2bG1z7lPhm+ky81PpOF2j4AAAAAAAAAAJOvFT4PuqQ/lkMPP7Do+b7uE3k+rcj6PgAAAAAAAAAAM5jtPBQil7ruUOg3k/vPMpWq+LrmVQa3AACAPwAAgD9tADc+A3T9Ph+bSr7RlU2/jxCdPsMBsb4AAAAAAAAAAGY32Lyqc/E+4fmUukHHVb+03xe9T5gCvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlZ9U+/Tqc0CUhpRSlIwBbJRLuIwBdJRHQNCdWaOcUdt1fZQoaAZoCWgPQwhmiGNdHJRzQJSGlFKUaBVLq2gWR0DQnVs3EQ5FdX2UKGgGaAloD0MIKChFK/cwb0CUhpRSlGgVS55oFkdA0J1dK8+Ro3V9lChoBmgJaA9DCP8/TpjwTXBAlIaUUpRoFUuAaBZHQNCdXxfOUt91fZQoaAZoCWgPQwjrxyb5URpzQJSGlFKUaBVLkmgWR0DQnV+ZkTYedX2UKGgGaAloD0MIpRXfUHiycUCUhpRSlGgVS7FoFkdA0J1gx4IKMXV9lChoBmgJaA9DCMDnhxFCIXBAlIaUUpRoFUuJaBZHQNCdZuaScLB1fZQoaAZoCWgPQwhQx2MGquhzQJSGlFKUaBVLq2gWR0DQnWgxQBPsdX2UKGgGaAloD0MIObUzTC0+cUCUhpRSlGgVS4RoFkdA0J1pAAyVOnV9lChoBmgJaA9DCB/Y8V9guHNAlIaUUpRoFUu9aBZHQNCdaywjdHl1fZQoaAZoCWgPQwjhC5OpAopzQJSGlFKUaBVLwGgWR0DQnWwDW9UTdX2UKGgGaAloD0MIGCZTBaPwckCUhpRSlGgVS8BoFkdA0J1txJd0JXV9lChoBmgJaA9DCLiSHRsBxm9AlIaUUpRoFUuRaBZHQNCdboubqhV1fZQoaAZoCWgPQwhjmX6JeDRzQJSGlFKUaBVLuGgWR0DQnXH7qIJrdX2UKGgGaAloD0MIx4LCoAx6cUCUhpRSlGgVS4ZoFkdA0J13P6KtP3V9lChoBmgJaA9DCO1hLxRwcnFAlIaUUpRoFUutaBZHQNCdeIj8k2R1fZQoaAZoCWgPQwhmMbH5+K9zQJSGlFKUaBVLsmgWR0DQnXqGoJiRdX2UKGgGaAloD0MIl6sfm6S8cECUhpRSlGgVS4xoFkdA0J1+NVzZH3V9lChoBmgJaA9DCPw4miNrq3JAlIaUUpRoFUuyaBZHQNCdf0lNUOx1fZQoaAZoCWgPQwjFO8CT1pVyQJSGlFKUaBVLm2gWR0DQnX+4BmwrdX2UKGgGaAloD0MIsmZkkDuPcUCUhpRSlGgVS5hoFkdA0J1/ogFHKHV9lChoBmgJaA9DCLu04bA0XDtAlIaUUpRoFUtraBZHQNCdglpGnXN1fZQoaAZoCWgPQwi9N4YA4J9yQJSGlFKUaBVLwGgWR0DQnYVovi97dX2UKGgGaAloD0MIveE+citJckCUhpRSlGgVS6hoFkdA0J2J7zCk43V9lChoBmgJaA9DCM3km22uBnNAlIaUUpRoFUueaBZHQNCdjBQN0/51fZQoaAZoCWgPQwjmeXB3lmx0QJSGlFKUaBVLsWgWR0DQnY4W+GoKdX2UKGgGaAloD0MIwD3Pnzbcc0CUhpRSlGgVS7xoFkdA0J2PlIVdonV9lChoBmgJaA9DCN/gC5OpUnFAlIaUUpRoFUukaBZHQNCdj/NiYsx1fZQoaAZoCWgPQwglkuhl1LJwQJSGlFKUaBVLo2gWR0DQnZCNBF/hdX2UKGgGaAloD0MInPpA8g6dcUCUhpRSlGgVS6VoFkdA0J2UWvKU3XV9lChoBmgJaA9DCFwclZto8nJAlIaUUpRoFUupaBZHQNCdmvN3W4F1fZQoaAZoCWgPQwg0hjlBGzVwQJSGlFKUaBVLnGgWR0DQnZ9IH1OCdX2UKGgGaAloD0MIHCYapOCfckCUhpRSlGgVS61oFkdA0J2fSdvsJXV9lChoBmgJaA9DCGJLj6a6u3NAlIaUUpRoFUu/aBZHQNCdoSn5zo51fZQoaAZoCWgPQwhBCwkYXUxyQJSGlFKUaBVLoWgWR0DQnaGN1hb4dX2UKGgGaAloD0MIfCsSE1QdcECUhpRSlGgVS5JoFkdA0J2koWpIc3V9lChoBmgJaA9DCL5O6ssS93FAlIaUUpRoFUuvaBZHQNCdp8ifQKN1fZQoaAZoCWgPQwjmd5rM+LdzQJSGlFKUaBVLwmgWR0DQnakBgeA/dX2UKGgGaAloD0MIPITx0ziAckCUhpRSlGgVS8VoFkdA0J2pgwGnoHV9lChoBmgJaA9DCAdfmEzViHFAlIaUUpRoFUunaBZHQNCdrgDzRQd1fZQoaAZoCWgPQwiiCKnbWWNyQJSGlFKUaBVLpWgWR0DQna9+nZTRdX2UKGgGaAloD0MI9DKK5ZY8ckCUhpRSlGgVS51oFkdA0J2xVcUuc3V9lChoBmgJaA9DCKa1aWzv5nFAlIaUUpRoFUuYaBZHQNCdsUxmCiB1fZQoaAZoCWgPQwjxaOOItUJzQJSGlFKUaBVLoGgWR0DQnbJJ17pndX2UKGgGaAloD0MINgadEDq4QECUhpRSlGgVS11oFkdA0J2y3CKrJnV9lChoBmgJaA9DCGxAhLiylHNAlIaUUpRoFUuxaBZHQNCdtAmReTp1fZQoaAZoCWgPQwjeOZShqhVyQJSGlFKUaBVLqmgWR0DQnbhb9qDcdX2UKGgGaAloD0MIzEV8J+Y5b0CUhpRSlGgVS6hoFkdA0J2+Oi35OHV9lChoBmgJaA9DCAN7TKS0snJAlIaUUpRoFUuXaBZHQNCdwD8gpz91fZQoaAZoCWgPQwi5isVvStVyQJSGlFKUaBVLrGgWR0DQncUrTYukdX2UKGgGaAloD0MIwCK/fsjlcUCUhpRSlGgVS5poFkdA0J3HvFFUhnV9lChoBmgJaA9DCBAC8iUU1XBAlIaUUpRoFUuWaBZHQNCdyCIUJv51fZQoaAZoCWgPQwhgrG9gMg10QJSGlFKUaBVLx2gWR0DQncj/xUeddX2UKGgGaAloD0MIh4ibU4nucUCUhpRSlGgVS7ZoFkdA0J3KfvF3p3V9lChoBmgJaA9DCMtpT8m56XBAlIaUUpRoFUuUaBZHQNCdzHqZ+hJ1fZQoaAZoCWgPQwjbwB2ok7FzQJSGlFKUaBVLr2gWR0DQnc2ZssQNdX2UKGgGaAloD0MI+Q/pt6/ScUCUhpRSlGgVS5toFkdA0J3RLVWjoXV9lChoBmgJaA9DCP/omzSNtnFAlIaUUpRoFUulaBZHQNCd0WrbQC11fZQoaAZoCWgPQwgzxLEu7ip0QJSGlFKUaBVLpmgWR0DQndMsbvPUdX2UKGgGaAloD0MIieyDLEvlcUCUhpRSlGgVS6VoFkdA0J3Vn8Koh3V9lChoBmgJaA9DCBFxcyrZXXFAlIaUUpRoFUuyaBZHQNCd1y6tknV1fZQoaAZoCWgPQwgBNbVsLQNwQJSGlFKUaBVLmmgWR0DQndgI/qxDdX2UKGgGaAloD0MI+FJ40Gyfc0CUhpRSlGgVS8ZoFkdA0J3afAbhnHV9lChoBmgJaA9DCJVm8zgM7jpAlIaUUpRoFUtnaBZHQNCd3XMt9QZ1fZQoaAZoCWgPQwjX3xKAf5hKQJSGlFKUaBVLcGgWR0DQnd5tTDO1dX2UKGgGaAloD0MIC+2cZoFtckCUhpRSlGgVS6NoFkdA0J3fiOearnV9lChoBmgJaA9DCJI81/fhE3JAlIaUUpRoFUuIaBZHQNCd4KBVdX11fZQoaAZoCWgPQwjuXYO+tNdyQJSGlFKUaBVLxWgWR0DQnejfUF0QdX2UKGgGaAloD0MIveE+cusBc0CUhpRSlGgVS7xoFkdA0J3uRE4NqnV9lChoBmgJaA9DCH4bYrxmHXRAlIaUUpRoFUuyaBZHQNCd70edTYN1fZQoaAZoCWgPQwiuu3mqQzFyQJSGlFKUaBVLqGgWR0DQne9mxt52dX2UKGgGaAloD0MIcVmFzQCdcECUhpRSlGgVS5RoFkdA0J3wTb349HV9lChoBmgJaA9DCK7X9KAg+nJAlIaUUpRoFUujaBZHQNCd8xp+MIh1fZQoaAZoCWgPQwiSWb3DLSZzQJSGlFKUaBVLm2gWR0DQnfOlKsdUdX2UKGgGaAloD0MIh29h3bj5cUCUhpRSlGgVS7doFkdA0J3zlvIfbXV9lChoBmgJaA9DCJ0rSglBb3JAlIaUUpRoFUuEaBZHQNCd9mgBcRl1fZQoaAZoCWgPQwh7T+W059pxQJSGlFKUaBVLoWgWR0DQnfcW/JvHdX2UKGgGaAloD0MIgzP4+wXDcECUhpRSlGgVS65oFkdA0J37A80UGnV9lChoBmgJaA9DCGmqJ/MPm3FAlIaUUpRoFUucaBZHQNCd/erdWQx1fZQoaAZoCWgPQwg+eO3Shi9zQJSGlFKUaBVLumgWR0DQnf6Ymb9ZdX2UKGgGaAloD0MIvASnPpCJc0CUhpRSlGgVS6xoFkdA0J4CNjslcHV9lChoBmgJaA9DCFlOQukLanFAlIaUUpRoFUujaBZHQNCeAtrGipN1fZQoaAZoCWgPQwi1iCgmb8FvQJSGlFKUaBVLtGgWR0DQngU2/BWQdX2UKGgGaAloD0MIzAuwjw6EcECUhpRSlGgVS5NoFkdA0J4HWykbgnV9lChoBmgJaA9DCDyHMlSFinFAlIaUUpRoFUuJaBZHQNCeDBekYXR1fZQoaAZoCWgPQwgk0GBT53BvQJSGlFKUaBVLimgWR0DQng8rOJLvdX2UKGgGaAloD0MI598u+7UTckCUhpRSlGgVS5toFkdA0J4O+aBqbnV9lChoBmgJaA9DCA4viEjNs3JAlIaUUpRoFUuoaBZHQNCeEdSIgvF1fZQoaAZoCWgPQwhBmxw+aU1yQJSGlFKUaBVLrWgWR0DQnhInlXA/dX2UKGgGaAloD0MI4xdeSfKUcECUhpRSlGgVS5doFkdA0J4St7a7E3V9lChoBmgJaA9DCExxVdm3XXFAlIaUUpRoFUuZaBZHQNCeEw5vLox1fZQoaAZoCWgPQwgoJ9pVSGtOQJSGlFKUaBVLVGgWR0DQnhapvP1MdX2UKGgGaAloD0MIA7Fs5lBac0CUhpRSlGgVS6JoFkdA0J4XvfTCtXV9lChoBmgJaA9DCLfte9TfwHRAlIaUUpRoFUusaBZHQNCeGmhZha11fZQoaAZoCWgPQwgMWd3quWFxQJSGlFKUaBVLoWgWR0DQnh/5WRzSdX2UKGgGaAloD0MIEhYVcfoRdECUhpRSlGgVS7ZoFkdA0J4hBcAzYXV9lChoBmgJaA9DCEWEfxG0rnFAlIaUUpRoFUuiaBZHQNCeJCh37k51fZQoaAZoCWgPQwgRrKqX3yEoQJSGlFKUaBVLXGgWR0DQniT2dupCdX2UKGgGaAloD0MI0T5W8NuwckCUhpRSlGgVS7BoFkdA0J4ncO9WZXV9lChoBmgJaA9DCG/XS1OEIXRAlIaUUpRoFUvLaBZHQNCeKDzmOlx1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 3584,
80
+ "n_steps": 2048,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 8,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL21pa2kvLmxvY2FsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9taWtpLy5sb2NhbC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb7622f9fcfaec808b91be13188f9653d78d40ee80148afbbd7ccc1a326ce8be
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49e43b84a826aa7b33846f2f01a181004097629c5ad8488f287d95b9dd1fcc5c
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.14.0-239.el9.x86_64-x86_64-with-glibc2.34 # 1 SMP PREEMPT_DYNAMIC Thu Jan 19 14:14:19 UTC 2023
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0