Upload 6 files
Browse files
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f34e9a90430>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f34e9a904c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f34e9a90550>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f34e9a905e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f34e9a90670>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f34e9a90700>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f34e9a90790>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f34e9a90820>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f34e9a908b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f34e9a90940>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f34e9a909d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f34e9a90a60>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f34e9a91900>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 2031616,
|
47 |
+
"_total_timesteps": 2000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1679916065274815029,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL21pa2kvLmxvY2FsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9taWtpLy5sb2NhbC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMj9Tt71oe66FoxM+kpH7DV9WY5cyPAswAAgD8AAIA/ZmIFvEghhLreAk06wFXeNez7GDvyXG65AACAPwAAgD8zSgy9lgCYP7KFir35Q0O/kBh+veJ92b0AAAAAAAAAALN5HT1n5AS9I4MKvvbnB7w7Hws9engkPgAAgD8AAIA/AODQOh9x4Lv1TDc+QlylPILNIjxzaoA7AACAPwAAgD86nVI+/ruDPwgzgz4Ta/e+L1L/PhELnz4AAAAAAAAAABpPWj1PgQc9EwyOvnQsqL7p0iC+2FFGvgAAAAAAAAAAZr20PKmHM7zS9oq9putUPX5moj22eCs8AACAPwAAgD+a59Q84cCfuuYZezkG3Ws06fqEue6OkLgAAIA/AACAP9pQpr1rv3k/CIwTvjuxhr8s7UK+g+dpvQAAAAAAAAAAmh0VPI/qfLqai3O2+tNYsQLDCLtMF5Q1AACAPwAAgD+mP7Q97bi4P2bG1z7lPhm+ky81PpOF2j4AAAAAAAAAAJOvFT4PuqQ/lkMPP7Do+b7uE3k+rcj6PgAAAAAAAAAAM5jtPBQil7ruUOg3k/vPMpWq+LrmVQa3AACAPwAAgD9tADc+A3T9Ph+bSr7RlU2/jxCdPsMBsb4AAAAAAAAAAGY32Lyqc/E+4fmUukHHVb+03xe9T5gCvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlZ9U+/Tqc0CUhpRSlIwBbJRLuIwBdJRHQNCdWaOcUdt1fZQoaAZoCWgPQwhmiGNdHJRzQJSGlFKUaBVLq2gWR0DQnVs3EQ5FdX2UKGgGaAloD0MIKChFK/cwb0CUhpRSlGgVS55oFkdA0J1dK8+Ro3V9lChoBmgJaA9DCP8/TpjwTXBAlIaUUpRoFUuAaBZHQNCdXxfOUt91fZQoaAZoCWgPQwjrxyb5URpzQJSGlFKUaBVLkmgWR0DQnV+ZkTYedX2UKGgGaAloD0MIpRXfUHiycUCUhpRSlGgVS7FoFkdA0J1gx4IKMXV9lChoBmgJaA9DCMDnhxFCIXBAlIaUUpRoFUuJaBZHQNCdZuaScLB1fZQoaAZoCWgPQwhQx2MGquhzQJSGlFKUaBVLq2gWR0DQnWgxQBPsdX2UKGgGaAloD0MIObUzTC0+cUCUhpRSlGgVS4RoFkdA0J1pAAyVOnV9lChoBmgJaA9DCB/Y8V9guHNAlIaUUpRoFUu9aBZHQNCdaywjdHl1fZQoaAZoCWgPQwjhC5OpAopzQJSGlFKUaBVLwGgWR0DQnWwDW9UTdX2UKGgGaAloD0MIGCZTBaPwckCUhpRSlGgVS8BoFkdA0J1txJd0JXV9lChoBmgJaA9DCLiSHRsBxm9AlIaUUpRoFUuRaBZHQNCdboubqhV1fZQoaAZoCWgPQwhjmX6JeDRzQJSGlFKUaBVLuGgWR0DQnXH7qIJrdX2UKGgGaAloD0MIx4LCoAx6cUCUhpRSlGgVS4ZoFkdA0J13P6KtP3V9lChoBmgJaA9DCO1hLxRwcnFAlIaUUpRoFUutaBZHQNCdeIj8k2R1fZQoaAZoCWgPQwhmMbH5+K9zQJSGlFKUaBVLsmgWR0DQnXqGoJiRdX2UKGgGaAloD0MIl6sfm6S8cECUhpRSlGgVS4xoFkdA0J1+NVzZH3V9lChoBmgJaA9DCPw4miNrq3JAlIaUUpRoFUuyaBZHQNCdf0lNUOx1fZQoaAZoCWgPQwjFO8CT1pVyQJSGlFKUaBVLm2gWR0DQnX+4BmwrdX2UKGgGaAloD0MIsmZkkDuPcUCUhpRSlGgVS5hoFkdA0J1/ogFHKHV9lChoBmgJaA9DCLu04bA0XDtAlIaUUpRoFUtraBZHQNCdglpGnXN1fZQoaAZoCWgPQwi9N4YA4J9yQJSGlFKUaBVLwGgWR0DQnYVovi97dX2UKGgGaAloD0MIveE+citJckCUhpRSlGgVS6hoFkdA0J2J7zCk43V9lChoBmgJaA9DCM3km22uBnNAlIaUUpRoFUueaBZHQNCdjBQN0/51fZQoaAZoCWgPQwjmeXB3lmx0QJSGlFKUaBVLsWgWR0DQnY4W+GoKdX2UKGgGaAloD0MIwD3Pnzbcc0CUhpRSlGgVS7xoFkdA0J2PlIVdonV9lChoBmgJaA9DCN/gC5OpUnFAlIaUUpRoFUukaBZHQNCdj/NiYsx1fZQoaAZoCWgPQwglkuhl1LJwQJSGlFKUaBVLo2gWR0DQnZCNBF/hdX2UKGgGaAloD0MInPpA8g6dcUCUhpRSlGgVS6VoFkdA0J2UWvKU3XV9lChoBmgJaA9DCFwclZto8nJAlIaUUpRoFUupaBZHQNCdmvN3W4F1fZQoaAZoCWgPQwg0hjlBGzVwQJSGlFKUaBVLnGgWR0DQnZ9IH1OCdX2UKGgGaAloD0MIHCYapOCfckCUhpRSlGgVS61oFkdA0J2fSdvsJXV9lChoBmgJaA9DCGJLj6a6u3NAlIaUUpRoFUu/aBZHQNCdoSn5zo51fZQoaAZoCWgPQwhBCwkYXUxyQJSGlFKUaBVLoWgWR0DQnaGN1hb4dX2UKGgGaAloD0MIfCsSE1QdcECUhpRSlGgVS5JoFkdA0J2koWpIc3V9lChoBmgJaA9DCL5O6ssS93FAlIaUUpRoFUuvaBZHQNCdp8ifQKN1fZQoaAZoCWgPQwjmd5rM+LdzQJSGlFKUaBVLwmgWR0DQnakBgeA/dX2UKGgGaAloD0MIPITx0ziAckCUhpRSlGgVS8VoFkdA0J2pgwGnoHV9lChoBmgJaA9DCAdfmEzViHFAlIaUUpRoFUunaBZHQNCdrgDzRQd1fZQoaAZoCWgPQwiiCKnbWWNyQJSGlFKUaBVLpWgWR0DQna9+nZTRdX2UKGgGaAloD0MI9DKK5ZY8ckCUhpRSlGgVS51oFkdA0J2xVcUuc3V9lChoBmgJaA9DCKa1aWzv5nFAlIaUUpRoFUuYaBZHQNCdsUxmCiB1fZQoaAZoCWgPQwjxaOOItUJzQJSGlFKUaBVLoGgWR0DQnbJJ17pndX2UKGgGaAloD0MINgadEDq4QECUhpRSlGgVS11oFkdA0J2y3CKrJnV9lChoBmgJaA9DCGxAhLiylHNAlIaUUpRoFUuxaBZHQNCdtAmReTp1fZQoaAZoCWgPQwjeOZShqhVyQJSGlFKUaBVLqmgWR0DQnbhb9qDcdX2UKGgGaAloD0MIzEV8J+Y5b0CUhpRSlGgVS6hoFkdA0J2+Oi35OHV9lChoBmgJaA9DCAN7TKS0snJAlIaUUpRoFUuXaBZHQNCdwD8gpz91fZQoaAZoCWgPQwi5isVvStVyQJSGlFKUaBVLrGgWR0DQncUrTYukdX2UKGgGaAloD0MIwCK/fsjlcUCUhpRSlGgVS5poFkdA0J3HvFFUhnV9lChoBmgJaA9DCBAC8iUU1XBAlIaUUpRoFUuWaBZHQNCdyCIUJv51fZQoaAZoCWgPQwhgrG9gMg10QJSGlFKUaBVLx2gWR0DQncj/xUeddX2UKGgGaAloD0MIh4ibU4nucUCUhpRSlGgVS7ZoFkdA0J3KfvF3p3V9lChoBmgJaA9DCMtpT8m56XBAlIaUUpRoFUuUaBZHQNCdzHqZ+hJ1fZQoaAZoCWgPQwjbwB2ok7FzQJSGlFKUaBVLr2gWR0DQnc2ZssQNdX2UKGgGaAloD0MI+Q/pt6/ScUCUhpRSlGgVS5toFkdA0J3RLVWjoXV9lChoBmgJaA9DCP/omzSNtnFAlIaUUpRoFUulaBZHQNCd0WrbQC11fZQoaAZoCWgPQwgzxLEu7ip0QJSGlFKUaBVLpmgWR0DQndMsbvPUdX2UKGgGaAloD0MIieyDLEvlcUCUhpRSlGgVS6VoFkdA0J3Vn8Koh3V9lChoBmgJaA9DCBFxcyrZXXFAlIaUUpRoFUuyaBZHQNCd1y6tknV1fZQoaAZoCWgPQwgBNbVsLQNwQJSGlFKUaBVLmmgWR0DQndgI/qxDdX2UKGgGaAloD0MI+FJ40Gyfc0CUhpRSlGgVS8ZoFkdA0J3afAbhnHV9lChoBmgJaA9DCJVm8zgM7jpAlIaUUpRoFUtnaBZHQNCd3XMt9QZ1fZQoaAZoCWgPQwjX3xKAf5hKQJSGlFKUaBVLcGgWR0DQnd5tTDO1dX2UKGgGaAloD0MIC+2cZoFtckCUhpRSlGgVS6NoFkdA0J3fiOearnV9lChoBmgJaA9DCJI81/fhE3JAlIaUUpRoFUuIaBZHQNCd4KBVdX11fZQoaAZoCWgPQwjuXYO+tNdyQJSGlFKUaBVLxWgWR0DQnejfUF0QdX2UKGgGaAloD0MIveE+cusBc0CUhpRSlGgVS7xoFkdA0J3uRE4NqnV9lChoBmgJaA9DCH4bYrxmHXRAlIaUUpRoFUuyaBZHQNCd70edTYN1fZQoaAZoCWgPQwiuu3mqQzFyQJSGlFKUaBVLqGgWR0DQne9mxt52dX2UKGgGaAloD0MIcVmFzQCdcECUhpRSlGgVS5RoFkdA0J3wTb349HV9lChoBmgJaA9DCK7X9KAg+nJAlIaUUpRoFUujaBZHQNCd8xp+MIh1fZQoaAZoCWgPQwiSWb3DLSZzQJSGlFKUaBVLm2gWR0DQnfOlKsdUdX2UKGgGaAloD0MIh29h3bj5cUCUhpRSlGgVS7doFkdA0J3zlvIfbXV9lChoBmgJaA9DCJ0rSglBb3JAlIaUUpRoFUuEaBZHQNCd9mgBcRl1fZQoaAZoCWgPQwh7T+W059pxQJSGlFKUaBVLoWgWR0DQnfcW/JvHdX2UKGgGaAloD0MIgzP4+wXDcECUhpRSlGgVS65oFkdA0J37A80UGnV9lChoBmgJaA9DCGmqJ/MPm3FAlIaUUpRoFUucaBZHQNCd/erdWQx1fZQoaAZoCWgPQwg+eO3Shi9zQJSGlFKUaBVLumgWR0DQnf6Ymb9ZdX2UKGgGaAloD0MIvASnPpCJc0CUhpRSlGgVS6xoFkdA0J4CNjslcHV9lChoBmgJaA9DCFlOQukLanFAlIaUUpRoFUujaBZHQNCeAtrGipN1fZQoaAZoCWgPQwi1iCgmb8FvQJSGlFKUaBVLtGgWR0DQngU2/BWQdX2UKGgGaAloD0MIzAuwjw6EcECUhpRSlGgVS5NoFkdA0J4HWykbgnV9lChoBmgJaA9DCDyHMlSFinFAlIaUUpRoFUuJaBZHQNCeDBekYXR1fZQoaAZoCWgPQwgk0GBT53BvQJSGlFKUaBVLimgWR0DQng8rOJLvdX2UKGgGaAloD0MI598u+7UTckCUhpRSlGgVS5toFkdA0J4O+aBqbnV9lChoBmgJaA9DCA4viEjNs3JAlIaUUpRoFUuoaBZHQNCeEdSIgvF1fZQoaAZoCWgPQwhBmxw+aU1yQJSGlFKUaBVLrWgWR0DQnhInlXA/dX2UKGgGaAloD0MI4xdeSfKUcECUhpRSlGgVS5doFkdA0J4St7a7E3V9lChoBmgJaA9DCExxVdm3XXFAlIaUUpRoFUuZaBZHQNCeEw5vLox1fZQoaAZoCWgPQwgoJ9pVSGtOQJSGlFKUaBVLVGgWR0DQnhapvP1MdX2UKGgGaAloD0MIA7Fs5lBac0CUhpRSlGgVS6JoFkdA0J4XvfTCtXV9lChoBmgJaA9DCLfte9TfwHRAlIaUUpRoFUusaBZHQNCeGmhZha11fZQoaAZoCWgPQwgMWd3quWFxQJSGlFKUaBVLoWgWR0DQnh/5WRzSdX2UKGgGaAloD0MIEhYVcfoRdECUhpRSlGgVS7ZoFkdA0J4hBcAzYXV9lChoBmgJaA9DCEWEfxG0rnFAlIaUUpRoFUuiaBZHQNCeJCh37k51fZQoaAZoCWgPQwgRrKqX3yEoQJSGlFKUaBVLXGgWR0DQniT2dupCdX2UKGgGaAloD0MI0T5W8NuwckCUhpRSlGgVS7BoFkdA0J4ncO9WZXV9lChoBmgJaA9DCG/XS1OEIXRAlIaUUpRoFUvLaBZHQNCeKDzmOlx1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 3584,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 8,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL21pa2kvLmxvY2FsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9taWtpLy5sb2NhbC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb7622f9fcfaec808b91be13188f9653d78d40ee80148afbbd7ccc1a326ce8be
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49e43b84a826aa7b33846f2f01a181004097629c5ad8488f287d95b9dd1fcc5c
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.14.0-239.el9.x86_64-x86_64-with-glibc2.34 # 1 SMP PREEMPT_DYNAMIC Thu Jan 19 14:14:19 UTC 2023
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|