--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Pulsar X2V2 미니 무선 게이밍 마우스 (블랙) 와이에스비투비 - text: TOSHIBA B-EX4T2 바코드프린터 산업용프린터 라벨프린터 203DPI_USB ㈜비티에스홀딩스 - text: '[당일출고]삼성전자 SL-J1680 컬러잉크젯 복합기 인쇄+복사+스캔 [정품잉크포함] 제일프린텍' - text: 지클릭커 슈퍼히어로 SPK100 저소음 유선 무선 블루투스 레인보우 백라이트 기계식 게임용 키보드 (레트로 레드) (주)피씨베이스 - text: NIIMBOT 님봇 D110 라벨기 휴대용 라벨프린터 라벨1롤포함 빅마운트앤컴퍼니 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.8548111301103685 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 9 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7 | | | 1 | | | 4 | | | 2 | | | 6 | | | 8 | | | 3 | | | 5 | | | 0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.8548 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_el18") # Run inference preds = model("Pulsar X2V2 미니 무선 게이밍 마우스 (블랙) 와이에스비투비") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 4 | 10.5569 | 27 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 50 | | 1 | 50 | | 2 | 50 | | 3 | 50 | | 4 | 50 | | 5 | 50 | | 6 | 13 | | 7 | 50 | | 8 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0154 | 1 | 0.4961 | - | | 0.7692 | 50 | 0.1923 | - | | 1.5385 | 100 | 0.0615 | - | | 2.3077 | 150 | 0.0532 | - | | 3.0769 | 200 | 0.0513 | - | | 3.8462 | 250 | 0.0283 | - | | 4.6154 | 300 | 0.0313 | - | | 5.3846 | 350 | 0.0258 | - | | 6.1538 | 400 | 0.0174 | - | | 6.9231 | 450 | 0.0053 | - | | 7.6923 | 500 | 0.0021 | - | | 8.4615 | 550 | 0.0039 | - | | 9.2308 | 600 | 0.0059 | - | | 10.0 | 650 | 0.0001 | - | | 10.7692 | 700 | 0.0001 | - | | 11.5385 | 750 | 0.0001 | - | | 12.3077 | 800 | 0.0001 | - | | 13.0769 | 850 | 0.0001 | - | | 13.8462 | 900 | 0.0 | - | | 14.6154 | 950 | 0.0001 | - | | 15.3846 | 1000 | 0.0 | - | | 16.1538 | 1050 | 0.0 | - | | 16.9231 | 1100 | 0.0 | - | | 17.6923 | 1150 | 0.0 | - | | 18.4615 | 1200 | 0.0 | - | | 19.2308 | 1250 | 0.0 | - | | 20.0 | 1300 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```