--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 1+1 세트상품 푸쉬팝게임기 팝잇 푸시팝 뽁뽁이 게임기 스피드킹 토끼 곰돌이 우주인게임기_병아리게임기(5세대999레벨) 크앤비 - text: 굵은 모루 8mm 일반 장식줄 만들기재료 철사공예 아트 모루꽃 아트모루(10개입세트)_형광연두 아이디몬 주식회사 - text: 해리포터코스튬 풀세트 어린이 성인 남녀공용 졸사 이벤트 의상 추억 사진 후플푸프(7세트)_XXL 181-185cm 권장 here_ - text: 3D 토이나이프 야광 당근칼 틱톡 나이프 피젯 장난감 칼 미니검 3연발 다트권총(핑크) 또와토이 - text: 알꿀밤 소형 나노블럭 미니블록 5+1 YK앉은 분홍 고양이 243. CK꽃무늬 롱치마 해적 늘솔길에아람벌다 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.9032178674706208 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 14 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 5.0 | | | 4.0 | | | 10.0 | | | 3.0 | | | 12.0 | | | 2.0 | | | 1.0 | | | 8.0 | | | 7.0 | | | 11.0 | | | 0.0 | | | 13.0 | | | 6.0 | | | 9.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.9032 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_lh15") # Run inference preds = model("3D 토이나이프 야광 당근칼 틱톡 나이프 피젯 장난감 칼 미니검 3연발 다트권총(핑크) 또와토이") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 10.9546 | 25 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 48 | | 5.0 | 50 | | 6.0 | 38 | | 7.0 | 50 | | 8.0 | 50 | | 9.0 | 25 | | 10.0 | 50 | | 11.0 | 50 | | 12.0 | 50 | | 13.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0096 | 1 | 0.4054 | - | | 0.4808 | 50 | 0.3432 | - | | 0.9615 | 100 | 0.2163 | - | | 1.4423 | 150 | 0.0533 | - | | 1.9231 | 200 | 0.0368 | - | | 2.4038 | 250 | 0.0235 | - | | 2.8846 | 300 | 0.0308 | - | | 3.3654 | 350 | 0.0158 | - | | 3.8462 | 400 | 0.0122 | - | | 4.3269 | 450 | 0.0117 | - | | 4.8077 | 500 | 0.0041 | - | | 5.2885 | 550 | 0.004 | - | | 5.7692 | 600 | 0.006 | - | | 6.25 | 650 | 0.0096 | - | | 6.7308 | 700 | 0.004 | - | | 7.2115 | 750 | 0.0002 | - | | 7.6923 | 800 | 0.0002 | - | | 8.1731 | 850 | 0.0001 | - | | 8.6538 | 900 | 0.0001 | - | | 9.1346 | 950 | 0.0001 | - | | 9.6154 | 1000 | 0.0001 | - | | 10.0962 | 1050 | 0.0001 | - | | 10.5769 | 1100 | 0.0001 | - | | 11.0577 | 1150 | 0.0001 | - | | 11.5385 | 1200 | 0.0 | - | | 12.0192 | 1250 | 0.0001 | - | | 12.5 | 1300 | 0.0001 | - | | 12.9808 | 1350 | 0.0001 | - | | 13.4615 | 1400 | 0.0001 | - | | 13.9423 | 1450 | 0.0 | - | | 14.4231 | 1500 | 0.0 | - | | 14.9038 | 1550 | 0.0 | - | | 15.3846 | 1600 | 0.0 | - | | 15.8654 | 1650 | 0.0 | - | | 16.3462 | 1700 | 0.0001 | - | | 16.8269 | 1750 | 0.0 | - | | 17.3077 | 1800 | 0.0 | - | | 17.7885 | 1850 | 0.0 | - | | 18.2692 | 1900 | 0.0 | - | | 18.75 | 1950 | 0.0 | - | | 19.2308 | 2000 | 0.0 | - | | 19.7115 | 2050 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```