--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 잔디엣지 화단 경계 가든 정원 마당 잔디 분리대 테두리 그린 15cm x 50m 블랙_15cm x 50m 엔비스토어 - text: 마늘부직포 20g 160cm x 400m 냉해 서리방지 농업용 양파 월동 비닐하우스 보온 서리방지 부직포 20g_210cmX400m 케이eng - text: 단열 온실재배기 홈가드닝 정원 꽃 식물재배 월동준비 1.5x2x2m 2m폭5m길이2m높이(골격미포함) 달담상사 - text: 목단묘목 2-3지 겹꽃 노지월동 모란 개화주 오리지널 목단 46.동팡진 농업회사법인 세종식물원 주식회사 - text: 원형 동그라미 사각 타원형 화분받침 물받이 화분 받침대 민자 소 원형 민자_브라운_4호 영농사 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.9584072003272877 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 11 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0.0 | | | 4.0 | | | 8.0 | | | 9.0 | | | 6.0 | | | 1.0 | | | 3.0 | | | 7.0 | | | 10.0 | | | 2.0 | | | 5.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.9584 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_lh22") # Run inference preds = model("원형 동그라미 사각 타원형 화분받침 물받이 화분 받침대 민자 소 원형 민자_브라운_4호 영농사") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 4 | 11.5982 | 25 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | | 9.0 | 50 | | 10.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0116 | 1 | 0.4612 | - | | 0.5814 | 50 | 0.3432 | - | | 1.1628 | 100 | 0.1133 | - | | 1.7442 | 150 | 0.0601 | - | | 2.3256 | 200 | 0.0364 | - | | 2.9070 | 250 | 0.0199 | - | | 3.4884 | 300 | 0.0272 | - | | 4.0698 | 350 | 0.01 | - | | 4.6512 | 400 | 0.0023 | - | | 5.2326 | 450 | 0.0118 | - | | 5.8140 | 500 | 0.0097 | - | | 6.3953 | 550 | 0.0098 | - | | 6.9767 | 600 | 0.0128 | - | | 7.5581 | 650 | 0.003 | - | | 8.1395 | 700 | 0.0002 | - | | 8.7209 | 750 | 0.0001 | - | | 9.3023 | 800 | 0.0 | - | | 9.8837 | 850 | 0.0 | - | | 10.4651 | 900 | 0.0 | - | | 11.0465 | 950 | 0.0 | - | | 11.6279 | 1000 | 0.0 | - | | 12.2093 | 1050 | 0.0 | - | | 12.7907 | 1100 | 0.0 | - | | 13.3721 | 1150 | 0.0 | - | | 13.9535 | 1200 | 0.0001 | - | | 14.5349 | 1250 | 0.0 | - | | 15.1163 | 1300 | 0.0 | - | | 15.6977 | 1350 | 0.0 | - | | 16.2791 | 1400 | 0.0 | - | | 16.8605 | 1450 | 0.0 | - | | 17.4419 | 1500 | 0.0 | - | | 18.0233 | 1550 | 0.0 | - | | 18.6047 | 1600 | 0.0 | - | | 19.1860 | 1650 | 0.0 | - | | 19.7674 | 1700 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```