File size: 2,329 Bytes
727eaba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: hubert-base-ls960-finetuned-ie
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hubert-base-ls960-finetuned-ie
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the None dataset.
It achieves the following results on the evaluation set:
- Accuracy: 0.6130
- Loss: 1.1686
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 1.3145 | 1.0 | 51 | 0.3647 | 1.2880 |
| 1.137 | 2.0 | 102 | 0.4316 | 1.1491 |
| 1.0227 | 3.0 | 153 | 0.5829 | 0.9724 |
| 0.9822 | 4.0 | 204 | 0.5645 | 0.9873 |
| 0.9084 | 5.0 | 255 | 0.5742 | 1.0029 |
| 0.8217 | 6.0 | 306 | 0.5887 | 1.0273 |
| 0.779 | 7.0 | 357 | 0.6120 | 0.9774 |
| 0.7444 | 8.0 | 408 | 0.6208 | 1.0336 |
| 0.6894 | 9.0 | 459 | 0.6140 | 0.9925 |
| 0.6486 | 10.0 | 510 | 0.6043 | 1.0733 |
| 0.6669 | 11.0 | 561 | 0.6305 | 1.0746 |
| 0.6184 | 12.0 | 612 | 0.6072 | 1.1670 |
| 0.5231 | 13.0 | 663 | 0.6052 | 1.1792 |
| 0.5381 | 14.0 | 714 | 0.6198 | 1.1432 |
| 0.5251 | 15.0 | 765 | 0.6130 | 1.1686 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.0
- Datasets 2.10.1
- Tokenizers 0.13.2
|