minoosh's picture
update model card README.md
727eaba
|
raw
history blame
2.33 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: hubert-base-ls960-finetuned-ie
    results: []

hubert-base-ls960-finetuned-ie

This model is a fine-tuned version of facebook/hubert-base-ls960 on the None dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.6130
  • Loss: 1.1686

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Accuracy Validation Loss
1.3145 1.0 51 0.3647 1.2880
1.137 2.0 102 0.4316 1.1491
1.0227 3.0 153 0.5829 0.9724
0.9822 4.0 204 0.5645 0.9873
0.9084 5.0 255 0.5742 1.0029
0.8217 6.0 306 0.5887 1.0273
0.779 7.0 357 0.6120 0.9774
0.7444 8.0 408 0.6208 1.0336
0.6894 9.0 459 0.6140 0.9925
0.6486 10.0 510 0.6043 1.0733
0.6669 11.0 561 0.6305 1.0746
0.6184 12.0 612 0.6072 1.1670
0.5231 13.0 663 0.6052 1.1792
0.5381 14.0 714 0.6198 1.1432
0.5251 15.0 765 0.6130 1.1686

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.0
  • Datasets 2.10.1
  • Tokenizers 0.13.2