File size: 1,772 Bytes
da76d67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-IEMOCAP_videos-finetuned-IEMOCAP_videos_20
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-IEMOCAP_videos-finetuned-IEMOCAP_videos_20

This model is a fine-tuned version of [minoosh/videomae-base-finetuned-IEMOCAP_videos](https://huggingface.co/minoosh/videomae-base-finetuned-IEMOCAP_videos) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3677
- Accuracy: 0.3375

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 4070

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.317         | 0.2   | 815  | 1.3669          | 0.2291   |
| 1.3102        | 1.2   | 1630 | 1.4069          | 0.2698   |
| 1.2155        | 2.2   | 2445 | 1.3784          | 0.2857   |
| 1.1855        | 3.2   | 3260 | 1.3396          | 0.3538   |
| 1.5309        | 4.2   | 4070 | 1.3619          | 0.3055   |


### Framework versions

- Transformers 4.29.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3