--- library_name: transformers language: - spa tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - pyannote/segmentation model-index: - name: segmentation-3.0 results: [] --- # segmentation-3.0 This model is a fine-tuned version of [](https://huggingface.co/) on the pyannote/segmentation dataset. It achieves the following results on the evaluation set: - Loss: 0.6638 - Der: 0.2932 - False Alarm: 0.2540 - Missed Detection: 0.0387 - Confusion: 0.0004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.3145 | 1.0 | 282 | 0.5751 | 0.2944 | 0.2487 | 0.0454 | 0.0003 | | 0.3087 | 2.0 | 564 | 0.5957 | 0.2912 | 0.2462 | 0.0440 | 0.0010 | | 0.2905 | 3.0 | 846 | 0.6614 | 0.2970 | 0.2627 | 0.0333 | 0.0010 | | 0.2733 | 4.0 | 1128 | 0.6626 | 0.2940 | 0.2558 | 0.0378 | 0.0004 | | 0.2672 | 5.0 | 1410 | 0.6638 | 0.2932 | 0.2540 | 0.0387 | 0.0004 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1 - Datasets 3.0.1 - Tokenizers 0.20.0