mireiaplalis commited on
Commit
344e520
1 Parent(s): f716112

Training complete

Browse files
Files changed (1) hide show
  1. README.md +49 -49
README.md CHANGED
@@ -20,58 +20,58 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.2301
24
- - Precision: 0.5948
25
- - Recall: 0.6779
26
- - F1: 0.6336
27
- - Accuracy: 0.9265
28
- - Adr Precision: 0.5579
29
- - Adr Recall: 0.6812
30
- - Adr F1: 0.6134
31
- - Disease Precision: 0.2273
32
- - Disease Recall: 0.1562
33
- - Disease F1: 0.1852
34
- - Drug Precision: 0.8136
35
- - Drug Recall: 0.8775
36
- - Drug F1: 0.8443
37
- - Finding Precision: 0.2667
38
- - Finding Recall: 0.2759
39
- - Finding F1: 0.2712
40
  - Symptom Precision: 0.5
41
- - Symptom Recall: 0.0435
42
- - Symptom F1: 0.08
43
- - B-adr Precision: 0.7749
44
- - B-adr Recall: 0.8513
45
- - B-adr F1: 0.8113
46
- - B-disease Precision: 1.0
47
- - B-disease Recall: 0.1562
48
- - B-disease F1: 0.2703
49
- - B-drug Precision: 0.9327
50
- - B-drug Recall: 0.9557
51
- - B-drug F1: 0.9440
52
- - B-finding Precision: 0.5909
53
- - B-finding Recall: 0.4483
54
- - B-finding F1: 0.5098
55
  - B-symptom Precision: 0.5
56
- - B-symptom Recall: 0.0435
57
- - B-symptom F1: 0.08
58
- - I-adr Precision: 0.5725
59
  - I-adr Recall: 0.6782
60
- - I-adr F1: 0.6209
61
- - I-disease Precision: 0.4091
62
- - I-disease Recall: 0.3103
63
- - I-disease F1: 0.3529
64
- - I-drug Precision: 0.8458
65
- - I-drug Recall: 0.8873
66
- - I-drug F1: 0.8660
67
- - I-finding Precision: 0.3529
68
- - I-finding Recall: 0.2222
69
- - I-finding F1: 0.2727
70
  - I-symptom Precision: 0.0
71
  - I-symptom Recall: 0.0
72
  - I-symptom F1: 0.0
73
- - Macro Avg F1: 0.4728
74
- - Weighted Avg F1: 0.7278
75
 
76
  ## Model description
77
 
@@ -102,9 +102,9 @@ The following hyperparameters were used during training:
102
 
103
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Adr Precision | Adr Recall | Adr F1 | Disease Precision | Disease Recall | Disease F1 | Drug Precision | Drug Recall | Drug F1 | Finding Precision | Finding Recall | Finding F1 | Symptom Precision | Symptom Recall | Symptom F1 | B-adr Precision | B-adr Recall | B-adr F1 | B-disease Precision | B-disease Recall | B-disease F1 | B-drug Precision | B-drug Recall | B-drug F1 | B-finding Precision | B-finding Recall | B-finding F1 | B-symptom Precision | B-symptom Recall | B-symptom F1 | I-adr Precision | I-adr Recall | I-adr F1 | I-disease Precision | I-disease Recall | I-disease F1 | I-drug Precision | I-drug Recall | I-drug F1 | I-finding Precision | I-finding Recall | I-finding F1 | I-symptom Precision | I-symptom Recall | I-symptom F1 | Macro Avg F1 | Weighted Avg F1 |
104
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:|:------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------:|:-------:|:-----------------:|:--------------:|:----------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------:|:---------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:---------------:|:------------:|:--------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------:|:---------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:------------:|:---------------:|
105
- | No log | 1.0 | 127 | 0.2653 | 0.5472 | 0.6201 | 0.5814 | 0.9128 | 0.4942 | 0.6376 | 0.5568 | 0.0 | 0.0 | 0.0 | 0.7952 | 0.8186 | 0.8068 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7530 | 0.7731 | 0.7629 | 0.0 | 0.0 | 0.0 | 0.9179 | 0.8818 | 0.8995 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4915 | 0.6325 | 0.5532 | 0.1429 | 0.0345 | 0.0556 | 0.855 | 0.8382 | 0.8465 | 0.3333 | 0.0370 | 0.0667 | 0.0 | 0.0 | 0.0 | 0.3184 | 0.6587 |
106
- | No log | 2.0 | 254 | 0.2307 | 0.5896 | 0.6632 | 0.6242 | 0.9254 | 0.5546 | 0.6722 | 0.6077 | 0.2222 | 0.1875 | 0.2034 | 0.8093 | 0.8529 | 0.8305 | 0.2083 | 0.1724 | 0.1887 | 0.0 | 0.0 | 0.0 | 0.7663 | 0.8263 | 0.7952 | 1.0 | 0.1562 | 0.2703 | 0.9366 | 0.9458 | 0.9412 | 0.625 | 0.3448 | 0.4444 | 0.0 | 0.0 | 0.0 | 0.5649 | 0.6600 | 0.6088 | 0.2963 | 0.2759 | 0.2857 | 0.8495 | 0.8578 | 0.8537 | 0.3846 | 0.1852 | 0.25 | 0.0 | 0.0 | 0.0 | 0.4449 | 0.7127 |
107
- | No log | 3.0 | 381 | 0.2301 | 0.5948 | 0.6779 | 0.6336 | 0.9265 | 0.5579 | 0.6812 | 0.6134 | 0.2273 | 0.1562 | 0.1852 | 0.8136 | 0.8775 | 0.8443 | 0.2667 | 0.2759 | 0.2712 | 0.5 | 0.0435 | 0.08 | 0.7749 | 0.8513 | 0.8113 | 1.0 | 0.1562 | 0.2703 | 0.9327 | 0.9557 | 0.9440 | 0.5909 | 0.4483 | 0.5098 | 0.5 | 0.0435 | 0.08 | 0.5725 | 0.6782 | 0.6209 | 0.4091 | 0.3103 | 0.3529 | 0.8458 | 0.8873 | 0.8660 | 0.3529 | 0.2222 | 0.2727 | 0.0 | 0.0 | 0.0 | 0.4728 | 0.7278 |
108
 
109
 
110
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.2334
24
+ - Precision: 0.6055
25
+ - Recall: 0.6988
26
+ - F1: 0.6488
27
+ - Accuracy: 0.9250
28
+ - Adr Precision: 0.5685
29
+ - Adr Recall: 0.6992
30
+ - Adr F1: 0.6271
31
+ - Disease Precision: 0.25
32
+ - Disease Recall: 0.125
33
+ - Disease F1: 0.1667
34
+ - Drug Precision: 0.8371
35
+ - Drug Recall: 0.9069
36
+ - Drug F1: 0.8706
37
+ - Finding Precision: 0.2439
38
+ - Finding Recall: 0.3448
39
+ - Finding F1: 0.2857
40
  - Symptom Precision: 0.5
41
+ - Symptom Recall: 0.0870
42
+ - Symptom F1: 0.1481
43
+ - B-adr Precision: 0.7596
44
+ - B-adr Recall: 0.8357
45
+ - B-adr F1: 0.7958
46
+ - B-disease Precision: 0.6
47
+ - B-disease Recall: 0.1875
48
+ - B-disease F1: 0.2857
49
+ - B-drug Precision: 0.9423
50
+ - B-drug Recall: 0.9655
51
+ - B-drug F1: 0.9538
52
+ - B-finding Precision: 0.5789
53
+ - B-finding Recall: 0.3793
54
+ - B-finding F1: 0.4583
55
  - B-symptom Precision: 0.5
56
+ - B-symptom Recall: 0.0870
57
+ - B-symptom F1: 0.1481
58
+ - I-adr Precision: 0.5699
59
  - I-adr Recall: 0.6782
60
+ - I-adr F1: 0.6194
61
+ - I-disease Precision: 0.3333
62
+ - I-disease Recall: 0.1379
63
+ - I-disease F1: 0.1951
64
+ - I-drug Precision: 0.8611
65
+ - I-drug Recall: 0.9118
66
+ - I-drug F1: 0.8857
67
+ - I-finding Precision: 0.3125
68
+ - I-finding Recall: 0.3704
69
+ - I-finding F1: 0.3390
70
  - I-symptom Precision: 0.0
71
  - I-symptom Recall: 0.0
72
  - I-symptom F1: 0.0
73
+ - Macro Avg F1: 0.4681
74
+ - Weighted Avg F1: 0.7238
75
 
76
  ## Model description
77
 
 
102
 
103
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Adr Precision | Adr Recall | Adr F1 | Disease Precision | Disease Recall | Disease F1 | Drug Precision | Drug Recall | Drug F1 | Finding Precision | Finding Recall | Finding F1 | Symptom Precision | Symptom Recall | Symptom F1 | B-adr Precision | B-adr Recall | B-adr F1 | B-disease Precision | B-disease Recall | B-disease F1 | B-drug Precision | B-drug Recall | B-drug F1 | B-finding Precision | B-finding Recall | B-finding F1 | B-symptom Precision | B-symptom Recall | B-symptom F1 | I-adr Precision | I-adr Recall | I-adr F1 | I-disease Precision | I-disease Recall | I-disease F1 | I-drug Precision | I-drug Recall | I-drug F1 | I-finding Precision | I-finding Recall | I-finding F1 | I-symptom Precision | I-symptom Recall | I-symptom F1 | Macro Avg F1 | Weighted Avg F1 |
104
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:|:------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------:|:-------:|:-----------------:|:--------------:|:----------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------:|:---------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:---------------:|:------------:|:--------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------:|:---------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:------------:|:---------------:|
105
+ | No log | 1.0 | 127 | 0.2633 | 0.5612 | 0.6348 | 0.5958 | 0.9139 | 0.5047 | 0.6436 | 0.5658 | 0.0 | 0.0 | 0.0 | 0.8148 | 0.8627 | 0.8381 | 0.0714 | 0.0345 | 0.0465 | 0.0 | 0.0 | 0.0 | 0.7530 | 0.7778 | 0.7652 | 0.0 | 0.0 | 0.0 | 0.9154 | 0.9064 | 0.9109 | 1.0 | 0.0690 | 0.1290 | 0.0 | 0.0 | 0.0 | 0.4993 | 0.6362 | 0.5595 | 0.0 | 0.0 | 0.0 | 0.8775 | 0.8775 | 0.8775 | 0.3077 | 0.1481 | 0.2 | 0.0 | 0.0 | 0.0 | 0.3442 | 0.6698 |
106
+ | No log | 2.0 | 254 | 0.2358 | 0.6 | 0.6863 | 0.6402 | 0.9240 | 0.5595 | 0.6857 | 0.6162 | 0.2222 | 0.125 | 0.16 | 0.8296 | 0.9069 | 0.8665 | 0.2647 | 0.3103 | 0.2857 | 0.0 | 0.0 | 0.0 | 0.7649 | 0.8247 | 0.7937 | 0.8333 | 0.1562 | 0.2632 | 0.9327 | 0.9557 | 0.9440 | 0.7222 | 0.4483 | 0.5532 | 0.0 | 0.0 | 0.0 | 0.5646 | 0.6709 | 0.6132 | 0.2222 | 0.1379 | 0.1702 | 0.8664 | 0.9216 | 0.8931 | 0.28 | 0.2593 | 0.2692 | 0.0 | 0.0 | 0.0 | 0.4500 | 0.7185 |
107
+ | No log | 3.0 | 381 | 0.2334 | 0.6055 | 0.6988 | 0.6488 | 0.9250 | 0.5685 | 0.6992 | 0.6271 | 0.25 | 0.125 | 0.1667 | 0.8371 | 0.9069 | 0.8706 | 0.2439 | 0.3448 | 0.2857 | 0.5 | 0.0870 | 0.1481 | 0.7596 | 0.8357 | 0.7958 | 0.6 | 0.1875 | 0.2857 | 0.9423 | 0.9655 | 0.9538 | 0.5789 | 0.3793 | 0.4583 | 0.5 | 0.0870 | 0.1481 | 0.5699 | 0.6782 | 0.6194 | 0.3333 | 0.1379 | 0.1951 | 0.8611 | 0.9118 | 0.8857 | 0.3125 | 0.3704 | 0.3390 | 0.0 | 0.0 | 0.0 | 0.4681 | 0.7238 |
108
 
109
 
110
  ### Framework versions