mireiaplalis commited on
Commit
b062a29
1 Parent(s): e9f3b8a

Training complete

Browse files
Files changed (1) hide show
  1. README.md +115 -0
README.md ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: bert-base-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: bert-finetuned-ner-cadec
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # bert-finetuned-ner-cadec
20
+
21
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.2301
24
+ - Precision: 0.5948
25
+ - Recall: 0.6779
26
+ - F1: 0.6336
27
+ - Accuracy: 0.9265
28
+ - Adr Precision: 0.5579
29
+ - Adr Recall: 0.6812
30
+ - Adr F1: 0.6134
31
+ - Disease Precision: 0.2273
32
+ - Disease Recall: 0.1562
33
+ - Disease F1: 0.1852
34
+ - Drug Precision: 0.8136
35
+ - Drug Recall: 0.8775
36
+ - Drug F1: 0.8443
37
+ - Finding Precision: 0.2667
38
+ - Finding Recall: 0.2759
39
+ - Finding F1: 0.2712
40
+ - Symptom Precision: 0.5
41
+ - Symptom Recall: 0.0435
42
+ - Symptom F1: 0.08
43
+ - B-adr Precision: 0.7749
44
+ - B-adr Recall: 0.8513
45
+ - B-adr F1: 0.8113
46
+ - B-disease Precision: 1.0
47
+ - B-disease Recall: 0.1562
48
+ - B-disease F1: 0.2703
49
+ - B-drug Precision: 0.9327
50
+ - B-drug Recall: 0.9557
51
+ - B-drug F1: 0.9440
52
+ - B-finding Precision: 0.5909
53
+ - B-finding Recall: 0.4483
54
+ - B-finding F1: 0.5098
55
+ - B-symptom Precision: 0.5
56
+ - B-symptom Recall: 0.0435
57
+ - B-symptom F1: 0.08
58
+ - I-adr Precision: 0.5725
59
+ - I-adr Recall: 0.6782
60
+ - I-adr F1: 0.6209
61
+ - I-disease Precision: 0.4091
62
+ - I-disease Recall: 0.3103
63
+ - I-disease F1: 0.3529
64
+ - I-drug Precision: 0.8458
65
+ - I-drug Recall: 0.8873
66
+ - I-drug F1: 0.8660
67
+ - I-finding Precision: 0.3529
68
+ - I-finding Recall: 0.2222
69
+ - I-finding F1: 0.2727
70
+ - I-symptom Precision: 0.0
71
+ - I-symptom Recall: 0.0
72
+ - I-symptom F1: 0.0
73
+ - Macro Avg F1: 0.4728
74
+ - Weighted Avg F1: 0.7278
75
+
76
+ ## Model description
77
+
78
+ More information needed
79
+
80
+ ## Intended uses & limitations
81
+
82
+ More information needed
83
+
84
+ ## Training and evaluation data
85
+
86
+ More information needed
87
+
88
+ ## Training procedure
89
+
90
+ ### Training hyperparameters
91
+
92
+ The following hyperparameters were used during training:
93
+ - learning_rate: 2e-05
94
+ - train_batch_size: 8
95
+ - eval_batch_size: 8
96
+ - seed: 42
97
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
98
+ - lr_scheduler_type: linear
99
+ - num_epochs: 3
100
+
101
+ ### Training results
102
+
103
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Adr Precision | Adr Recall | Adr F1 | Disease Precision | Disease Recall | Disease F1 | Drug Precision | Drug Recall | Drug F1 | Finding Precision | Finding Recall | Finding F1 | Symptom Precision | Symptom Recall | Symptom F1 | B-adr Precision | B-adr Recall | B-adr F1 | B-disease Precision | B-disease Recall | B-disease F1 | B-drug Precision | B-drug Recall | B-drug F1 | B-finding Precision | B-finding Recall | B-finding F1 | B-symptom Precision | B-symptom Recall | B-symptom F1 | I-adr Precision | I-adr Recall | I-adr F1 | I-disease Precision | I-disease Recall | I-disease F1 | I-drug Precision | I-drug Recall | I-drug F1 | I-finding Precision | I-finding Recall | I-finding F1 | I-symptom Precision | I-symptom Recall | I-symptom F1 | Macro Avg F1 | Weighted Avg F1 |
104
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:|:------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------:|:-------:|:-----------------:|:--------------:|:----------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------:|:---------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:---------------:|:------------:|:--------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------:|:---------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:------------:|:---------------:|
105
+ | No log | 1.0 | 127 | 0.2653 | 0.5472 | 0.6201 | 0.5814 | 0.9128 | 0.4942 | 0.6376 | 0.5568 | 0.0 | 0.0 | 0.0 | 0.7952 | 0.8186 | 0.8068 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7530 | 0.7731 | 0.7629 | 0.0 | 0.0 | 0.0 | 0.9179 | 0.8818 | 0.8995 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4915 | 0.6325 | 0.5532 | 0.1429 | 0.0345 | 0.0556 | 0.855 | 0.8382 | 0.8465 | 0.3333 | 0.0370 | 0.0667 | 0.0 | 0.0 | 0.0 | 0.3184 | 0.6587 |
106
+ | No log | 2.0 | 254 | 0.2307 | 0.5896 | 0.6632 | 0.6242 | 0.9254 | 0.5546 | 0.6722 | 0.6077 | 0.2222 | 0.1875 | 0.2034 | 0.8093 | 0.8529 | 0.8305 | 0.2083 | 0.1724 | 0.1887 | 0.0 | 0.0 | 0.0 | 0.7663 | 0.8263 | 0.7952 | 1.0 | 0.1562 | 0.2703 | 0.9366 | 0.9458 | 0.9412 | 0.625 | 0.3448 | 0.4444 | 0.0 | 0.0 | 0.0 | 0.5649 | 0.6600 | 0.6088 | 0.2963 | 0.2759 | 0.2857 | 0.8495 | 0.8578 | 0.8537 | 0.3846 | 0.1852 | 0.25 | 0.0 | 0.0 | 0.0 | 0.4449 | 0.7127 |
107
+ | No log | 3.0 | 381 | 0.2301 | 0.5948 | 0.6779 | 0.6336 | 0.9265 | 0.5579 | 0.6812 | 0.6134 | 0.2273 | 0.1562 | 0.1852 | 0.8136 | 0.8775 | 0.8443 | 0.2667 | 0.2759 | 0.2712 | 0.5 | 0.0435 | 0.08 | 0.7749 | 0.8513 | 0.8113 | 1.0 | 0.1562 | 0.2703 | 0.9327 | 0.9557 | 0.9440 | 0.5909 | 0.4483 | 0.5098 | 0.5 | 0.0435 | 0.08 | 0.5725 | 0.6782 | 0.6209 | 0.4091 | 0.3103 | 0.3529 | 0.8458 | 0.8873 | 0.8660 | 0.3529 | 0.2222 | 0.2727 | 0.0 | 0.0 | 0.0 | 0.4728 | 0.7278 |
108
+
109
+
110
+ ### Framework versions
111
+
112
+ - Transformers 4.35.2
113
+ - Pytorch 2.1.0+cu118
114
+ - Datasets 2.15.0
115
+ - Tokenizers 0.15.0