mireiaplalis commited on
Commit
ef0631a
1 Parent(s): 669681d

Training complete

Browse files
Files changed (1) hide show
  1. README.md +122 -0
README.md ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: roberta-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: roberta-basefinetuned-ner-cadec
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # roberta-basefinetuned-ner-cadec
20
+
21
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.3874
24
+ - Precision: 0.4370
25
+ - Recall: 0.4719
26
+ - F1: 0.4538
27
+ - Accuracy: 0.8849
28
+ - Adr Precision: 0.3917
29
+ - Adr Recall: 0.4477
30
+ - Adr F1: 0.4178
31
+ - Disease Precision: 0.0
32
+ - Disease Recall: 0.0
33
+ - Disease F1: 0.0
34
+ - Drug Precision: 0.7184
35
+ - Drug Recall: 0.7576
36
+ - Drug F1: 0.7375
37
+ - Finding Precision: 0.1389
38
+ - Finding Recall: 0.1111
39
+ - Finding F1: 0.1235
40
+ - Symptom Precision: 0.2353
41
+ - Symptom Recall: 0.1481
42
+ - Symptom F1: 0.1818
43
+ - B-adr Precision: 0.6259
44
+ - B-adr Recall: 0.6488
45
+ - B-adr F1: 0.6371
46
+ - B-disease Precision: 0.0
47
+ - B-disease Recall: 0.0
48
+ - B-disease F1: 0.0
49
+ - B-drug Precision: 0.8589
50
+ - B-drug Recall: 0.8485
51
+ - B-drug F1: 0.8537
52
+ - B-finding Precision: 0.4
53
+ - B-finding Recall: 0.1778
54
+ - B-finding F1: 0.2462
55
+ - B-symptom Precision: 0.2667
56
+ - B-symptom Recall: 0.16
57
+ - B-symptom F1: 0.2
58
+ - I-adr Precision: 0.3877
59
+ - I-adr Recall: 0.4305
60
+ - I-adr F1: 0.4079
61
+ - I-disease Precision: 0.0
62
+ - I-disease Recall: 0.0
63
+ - I-disease F1: 0.0
64
+ - I-drug Precision: 0.7456
65
+ - I-drug Recall: 0.7636
66
+ - I-drug F1: 0.7545
67
+ - I-finding Precision: 0.1429
68
+ - I-finding Recall: 0.125
69
+ - I-finding F1: 0.1333
70
+ - I-symptom Precision: 0.5
71
+ - I-symptom Recall: 0.1
72
+ - I-symptom F1: 0.1667
73
+ - Macro Avg F1: 0.3399
74
+ - Weighted Avg F1: 0.5527
75
+
76
+ ## Model description
77
+
78
+ More information needed
79
+
80
+ ## Intended uses & limitations
81
+
82
+ More information needed
83
+
84
+ ## Training and evaluation data
85
+
86
+ More information needed
87
+
88
+ ## Training procedure
89
+
90
+ ### Training hyperparameters
91
+
92
+ The following hyperparameters were used during training:
93
+ - learning_rate: 2e-05
94
+ - train_batch_size: 8
95
+ - eval_batch_size: 8
96
+ - seed: 42
97
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
98
+ - lr_scheduler_type: linear
99
+ - num_epochs: 10
100
+
101
+ ### Training results
102
+
103
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Adr Precision | Adr Recall | Adr F1 | Disease Precision | Disease Recall | Disease F1 | Drug Precision | Drug Recall | Drug F1 | Finding Precision | Finding Recall | Finding F1 | Symptom Precision | Symptom Recall | Symptom F1 | B-adr Precision | B-adr Recall | B-adr F1 | B-disease Precision | B-disease Recall | B-disease F1 | B-drug Precision | B-drug Recall | B-drug F1 | B-finding Precision | B-finding Recall | B-finding F1 | B-symptom Precision | B-symptom Recall | B-symptom F1 | I-adr Precision | I-adr Recall | I-adr F1 | I-disease Precision | I-disease Recall | I-disease F1 | I-drug Precision | I-drug Recall | I-drug F1 | I-finding Precision | I-finding Recall | I-finding F1 | I-symptom Precision | I-symptom Recall | I-symptom F1 | Macro Avg F1 | Weighted Avg F1 |
104
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:|:------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------:|:-------:|:-----------------:|:--------------:|:----------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------:|:---------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:---------------:|:------------:|:--------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------:|:---------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:------------:|:---------------:|
105
+ | No log | 1.0 | 127 | 0.5344 | 0.3114 | 0.2247 | 0.2611 | 0.8487 | 0.1715 | 0.1505 | 0.1603 | 0.0 | 0.0 | 0.0 | 0.98 | 0.5939 | 0.7396 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5933 | 0.2380 | 0.3397 | 0.0 | 0.0 | 0.0 | 1.0 | 0.5939 | 0.7452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1456 | 0.1347 | 0.1399 | 0.0 | 0.0 | 0.0 | 0.98 | 0.5939 | 0.7396 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1965 | 0.3329 |
106
+ | No log | 2.0 | 254 | 0.4494 | 0.3603 | 0.2946 | 0.3242 | 0.8676 | 0.2676 | 0.2440 | 0.2553 | 0.0 | 0.0 | 0.0 | 0.6519 | 0.6242 | 0.6378 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5703 | 0.4280 | 0.4890 | 0.0 | 0.0 | 0.0 | 1.0 | 0.6182 | 0.7640 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2759 | 0.2296 | 0.2506 | 0.0 | 0.0 | 0.0 | 0.7342 | 0.7030 | 0.7183 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2222 | 0.4204 |
107
+ | No log | 3.0 | 381 | 0.4357 | 0.3508 | 0.3758 | 0.3629 | 0.8628 | 0.2656 | 0.3431 | 0.2994 | 0.0 | 0.0 | 0.0 | 0.7451 | 0.6909 | 0.7170 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5393 | 0.5662 | 0.5524 | 0.0 | 0.0 | 0.0 | 0.9375 | 0.7273 | 0.8191 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2402 | 0.3113 | 0.2712 | 0.0 | 0.0 | 0.0 | 0.7550 | 0.6909 | 0.7215 | 1.0 | 0.0312 | 0.0606 | 0.0 | 0.0 | 0.0 | 0.2425 | 0.4573 |
108
+ | 0.5429 | 4.0 | 508 | 0.4086 | 0.4501 | 0.4170 | 0.4329 | 0.8819 | 0.3612 | 0.3890 | 0.3746 | 0.0 | 0.0 | 0.0 | 0.7922 | 0.7394 | 0.7649 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5988 | 0.5816 | 0.5901 | 0.0 | 0.0 | 0.0 | 0.9209 | 0.7758 | 0.8421 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3793 | 0.3642 | 0.3716 | 0.0 | 0.0 | 0.0 | 0.82 | 0.7455 | 0.7810 | 1.0 | 0.0312 | 0.0606 | 0.0 | 0.0 | 0.0 | 0.2645 | 0.5113 |
109
+ | 0.5429 | 5.0 | 635 | 0.3806 | 0.4225 | 0.4457 | 0.4338 | 0.8797 | 0.3398 | 0.4165 | 0.3743 | 0.0 | 0.0 | 0.0 | 0.7805 | 0.7758 | 0.7781 | 0.2 | 0.0222 | 0.0400 | 0.5 | 0.0370 | 0.0690 | 0.5844 | 0.6180 | 0.6007 | 0.0 | 0.0 | 0.0 | 0.8535 | 0.8121 | 0.8323 | 0.5 | 0.0222 | 0.0426 | 0.5 | 0.04 | 0.0741 | 0.3346 | 0.4018 | 0.3651 | 0.1667 | 0.0769 | 0.1053 | 0.8153 | 0.7758 | 0.7950 | 0.2 | 0.0312 | 0.0541 | 0.0 | 0.0 | 0.0 | 0.2869 | 0.5170 |
110
+ | 0.5429 | 6.0 | 762 | 0.3902 | 0.3860 | 0.4419 | 0.4121 | 0.8738 | 0.3329 | 0.4239 | 0.3729 | 0.0 | 0.0 | 0.0 | 0.6349 | 0.7273 | 0.6780 | 0.0833 | 0.0222 | 0.0351 | 0.4 | 0.0741 | 0.125 | 0.5832 | 0.6526 | 0.6159 | 0.0 | 0.0 | 0.0 | 0.7886 | 0.8364 | 0.8118 | 0.3333 | 0.0444 | 0.0784 | 0.4 | 0.08 | 0.1333 | 0.3198 | 0.3996 | 0.3553 | 0.0588 | 0.0769 | 0.0667 | 0.6910 | 0.7455 | 0.7172 | 0.1 | 0.0312 | 0.0476 | 0.0 | 0.0 | 0.0 | 0.2826 | 0.5099 |
111
+ | 0.5429 | 7.0 | 889 | 0.3776 | 0.4149 | 0.4594 | 0.4360 | 0.8795 | 0.3595 | 0.4367 | 0.3944 | 0.0 | 0.0 | 0.0 | 0.6949 | 0.7455 | 0.7193 | 0.125 | 0.0667 | 0.0870 | 0.3636 | 0.1481 | 0.2105 | 0.6094 | 0.6468 | 0.6276 | 0.0 | 0.0 | 0.0 | 0.8405 | 0.8303 | 0.8354 | 0.4167 | 0.1111 | 0.1754 | 0.4 | 0.16 | 0.2286 | 0.3443 | 0.4150 | 0.3764 | 0.0 | 0.0 | 0.0 | 0.7326 | 0.7636 | 0.7478 | 0.1905 | 0.125 | 0.1509 | 0.0 | 0.0 | 0.0 | 0.3142 | 0.5330 |
112
+ | 0.3019 | 8.0 | 1016 | 0.3892 | 0.4108 | 0.4657 | 0.4365 | 0.8781 | 0.3488 | 0.4404 | 0.3893 | 0.0 | 0.0 | 0.0 | 0.75 | 0.7636 | 0.7568 | 0.16 | 0.0889 | 0.1143 | 0.2727 | 0.1111 | 0.1579 | 0.5928 | 0.6679 | 0.6282 | 0.0 | 0.0 | 0.0 | 0.8625 | 0.8364 | 0.8492 | 0.4375 | 0.1556 | 0.2295 | 0.3 | 0.12 | 0.1714 | 0.3357 | 0.4172 | 0.3720 | 0.0 | 0.0 | 0.0 | 0.7875 | 0.7636 | 0.7754 | 0.1667 | 0.0938 | 0.1200 | 0.0 | 0.0 | 0.0 | 0.3146 | 0.5366 |
113
+ | 0.3019 | 9.0 | 1143 | 0.3872 | 0.4463 | 0.4719 | 0.4587 | 0.8845 | 0.3939 | 0.4495 | 0.4199 | 0.0 | 0.0 | 0.0 | 0.7530 | 0.7576 | 0.7553 | 0.1333 | 0.0889 | 0.1067 | 0.2667 | 0.1481 | 0.1905 | 0.6309 | 0.6430 | 0.6369 | 0.0 | 0.0 | 0.0 | 0.8571 | 0.8364 | 0.8466 | 0.4375 | 0.1556 | 0.2295 | 0.3077 | 0.16 | 0.2105 | 0.3893 | 0.4349 | 0.4108 | 0.0 | 0.0 | 0.0 | 0.7764 | 0.7576 | 0.7669 | 0.16 | 0.125 | 0.1404 | 0.6667 | 0.1 | 0.1739 | 0.3416 | 0.5540 |
114
+ | 0.3019 | 10.0 | 1270 | 0.3874 | 0.4370 | 0.4719 | 0.4538 | 0.8849 | 0.3917 | 0.4477 | 0.4178 | 0.0 | 0.0 | 0.0 | 0.7184 | 0.7576 | 0.7375 | 0.1389 | 0.1111 | 0.1235 | 0.2353 | 0.1481 | 0.1818 | 0.6259 | 0.6488 | 0.6371 | 0.0 | 0.0 | 0.0 | 0.8589 | 0.8485 | 0.8537 | 0.4 | 0.1778 | 0.2462 | 0.2667 | 0.16 | 0.2 | 0.3877 | 0.4305 | 0.4079 | 0.0 | 0.0 | 0.0 | 0.7456 | 0.7636 | 0.7545 | 0.1429 | 0.125 | 0.1333 | 0.5 | 0.1 | 0.1667 | 0.3399 | 0.5527 |
115
+
116
+
117
+ ### Framework versions
118
+
119
+ - Transformers 4.35.2
120
+ - Pytorch 2.1.0+cu118
121
+ - Datasets 2.15.0
122
+ - Tokenizers 0.15.0