File size: 1,793 Bytes
e1b9c1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: da-sentiment
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# da-sentiment

This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5176
- Accuracy: 0.9254

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 46   | 0.4631          | 0.9282   |
| No log        | 2.0   | 92   | 0.6217          | 0.9227   |
| No log        | 3.0   | 138  | 0.5297          | 0.9309   |
| No log        | 4.0   | 184  | 0.5492          | 0.9365   |
| No log        | 5.0   | 230  | 0.6775          | 0.9061   |
| No log        | 6.0   | 276  | 0.6767          | 0.9199   |
| No log        | 7.0   | 322  | 0.5680          | 0.9309   |
| No log        | 8.0   | 368  | 0.5551          | 0.9309   |
| No log        | 9.0   | 414  | 0.5094          | 0.9309   |
| No log        | 10.0  | 460  | 0.5176          | 0.9254   |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2