update model card README.md
Browse files
README.md
CHANGED
@@ -14,8 +14,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss:
|
18 |
-
- Cer: 0.
|
19 |
|
20 |
## Model description
|
21 |
|
@@ -34,85 +34,58 @@ More information needed
|
|
34 |
### Training hyperparameters
|
35 |
|
36 |
The following hyperparameters were used during training:
|
37 |
-
- learning_rate:
|
38 |
- train_batch_size: 2
|
39 |
- eval_batch_size: 8
|
40 |
- seed: 42
|
41 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
- lr_scheduler_type: linear
|
43 |
-
- num_epochs:
|
44 |
|
45 |
### Training results
|
46 |
|
47 |
| Training Loss | Epoch | Step | Validation Loss | Cer |
|
48 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
49 |
-
| 3.
|
50 |
-
| 2.
|
51 |
-
| 2.
|
52 |
-
|
|
53 |
-
|
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.068 | 30.37 | 20500 | 1.2289 | 0.4040 |
|
90 |
-
| 0.0664 | 31.11 | 21000 | 1.2289 | 0.4079 |
|
91 |
-
| 0.0747 | 31.85 | 21500 | 1.2642 | 0.4122 |
|
92 |
-
| 0.0663 | 32.59 | 22000 | 1.3062 | 0.4101 |
|
93 |
-
| 0.0668 | 33.33 | 22500 | 1.3486 | 0.4101 |
|
94 |
-
| 0.0592 | 34.07 | 23000 | 1.3346 | 0.4040 |
|
95 |
-
| 0.0513 | 34.81 | 23500 | 1.2958 | 0.4097 |
|
96 |
-
| 0.0511 | 35.56 | 24000 | 1.3798 | 0.4108 |
|
97 |
-
| 0.0557 | 36.3 | 24500 | 1.3521 | 0.4065 |
|
98 |
-
| 0.049 | 37.04 | 25000 | 1.4192 | 0.4094 |
|
99 |
-
| 0.0465 | 37.78 | 25500 | 1.4308 | 0.4108 |
|
100 |
-
| 0.0474 | 38.52 | 26000 | 1.4004 | 0.4058 |
|
101 |
-
| 0.0428 | 39.26 | 26500 | 1.3988 | 0.4054 |
|
102 |
-
| 0.0509 | 40.0 | 27000 | 1.4218 | 0.4069 |
|
103 |
-
| 0.0386 | 40.74 | 27500 | 1.3819 | 0.4104 |
|
104 |
-
| 0.0426 | 41.48 | 28000 | 1.4681 | 0.4090 |
|
105 |
-
| 0.0408 | 42.22 | 28500 | 1.4543 | 0.4104 |
|
106 |
-
| 0.0405 | 42.96 | 29000 | 1.4999 | 0.4108 |
|
107 |
-
| 0.036 | 43.7 | 29500 | 1.4922 | 0.4072 |
|
108 |
-
| 0.036 | 44.44 | 30000 | 1.4709 | 0.4087 |
|
109 |
-
| 0.04 | 45.19 | 30500 | 1.4858 | 0.4094 |
|
110 |
-
| 0.0343 | 45.93 | 31000 | 1.4606 | 0.4087 |
|
111 |
-
| 0.0288 | 46.67 | 31500 | 1.4599 | 0.4044 |
|
112 |
-
| 0.0454 | 47.41 | 32000 | 1.4288 | 0.4087 |
|
113 |
-
| 0.0322 | 48.15 | 32500 | 1.4589 | 0.4083 |
|
114 |
-
| 0.0327 | 48.89 | 33000 | 1.4502 | 0.4094 |
|
115 |
-
| 0.0272 | 49.63 | 33500 | 1.4558 | 0.4079 |
|
116 |
|
117 |
|
118 |
### Framework versions
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.6936
|
18 |
+
- Cer: 0.2531
|
19 |
|
20 |
## Model description
|
21 |
|
|
|
34 |
### Training hyperparameters
|
35 |
|
36 |
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 4e-05
|
38 |
- train_batch_size: 2
|
39 |
- eval_batch_size: 8
|
40 |
- seed: 42
|
41 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
- lr_scheduler_type: linear
|
43 |
+
- num_epochs: 30
|
44 |
|
45 |
### Training results
|
46 |
|
47 |
| Training Loss | Epoch | Step | Validation Loss | Cer |
|
48 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
49 |
+
| 3.2437 | 0.74 | 500 | 4.1235 | 1.0 |
|
50 |
+
| 2.8562 | 1.48 | 1000 | 3.5824 | 1.0 |
|
51 |
+
| 2.7606 | 2.22 | 1500 | 3.2239 | 1.0 |
|
52 |
+
| 2.0885 | 2.96 | 2000 | 1.1613 | 0.8147 |
|
53 |
+
| 1.0295 | 3.7 | 2500 | 0.7703 | 0.5125 |
|
54 |
+
| 0.796 | 4.44 | 3000 | 0.6539 | 0.4420 |
|
55 |
+
| 0.6484 | 5.19 | 3500 | 0.6259 | 0.3937 |
|
56 |
+
| 0.6099 | 5.93 | 4000 | 0.5749 | 0.3887 |
|
57 |
+
| 0.5772 | 6.67 | 4500 | 0.6031 | 0.3637 |
|
58 |
+
| 0.5158 | 7.41 | 5000 | 0.5978 | 0.3518 |
|
59 |
+
| 0.4923 | 8.15 | 5500 | 0.5621 | 0.3364 |
|
60 |
+
| 0.4679 | 8.89 | 6000 | 0.5371 | 0.3396 |
|
61 |
+
| 0.4385 | 9.63 | 6500 | 0.5804 | 0.3213 |
|
62 |
+
| 0.4818 | 10.37 | 7000 | 0.5469 | 0.3223 |
|
63 |
+
| 0.3797 | 11.11 | 7500 | 0.5789 | 0.3118 |
|
64 |
+
| 0.3669 | 11.85 | 8000 | 0.5733 | 0.2986 |
|
65 |
+
| 0.3777 | 12.59 | 8500 | 0.6053 | 0.3004 |
|
66 |
+
| 0.3613 | 13.33 | 9000 | 0.6061 | 0.2895 |
|
67 |
+
| 0.3454 | 14.07 | 9500 | 0.6072 | 0.2740 |
|
68 |
+
| 0.3532 | 14.81 | 10000 | 0.6119 | 0.2872 |
|
69 |
+
| 0.3087 | 15.56 | 10500 | 0.6020 | 0.2849 |
|
70 |
+
| 0.3277 | 16.3 | 11000 | 0.6397 | 0.2745 |
|
71 |
+
| 0.2978 | 17.04 | 11500 | 0.6216 | 0.2745 |
|
72 |
+
| 0.2939 | 17.78 | 12000 | 0.6377 | 0.2690 |
|
73 |
+
| 0.2675 | 18.52 | 12500 | 0.6752 | 0.2681 |
|
74 |
+
| 0.2873 | 19.26 | 13000 | 0.6677 | 0.2767 |
|
75 |
+
| 0.2779 | 20.0 | 13500 | 0.6748 | 0.2717 |
|
76 |
+
| 0.28 | 20.74 | 14000 | 0.6771 | 0.2645 |
|
77 |
+
| 0.2688 | 21.48 | 14500 | 0.6618 | 0.2604 |
|
78 |
+
| 0.2234 | 22.22 | 15000 | 0.6791 | 0.2613 |
|
79 |
+
| 0.2464 | 22.96 | 15500 | 0.6665 | 0.2626 |
|
80 |
+
| 0.2254 | 23.7 | 16000 | 0.7028 | 0.2572 |
|
81 |
+
| 0.2132 | 24.44 | 16500 | 0.6985 | 0.2567 |
|
82 |
+
| 0.2424 | 25.19 | 17000 | 0.6731 | 0.2590 |
|
83 |
+
| 0.2447 | 25.93 | 17500 | 0.6780 | 0.2544 |
|
84 |
+
| 0.2209 | 26.67 | 18000 | 0.6729 | 0.2567 |
|
85 |
+
| 0.2102 | 27.41 | 18500 | 0.6844 | 0.2563 |
|
86 |
+
| 0.2185 | 28.15 | 19000 | 0.6922 | 0.2585 |
|
87 |
+
| 0.2294 | 28.89 | 19500 | 0.6940 | 0.2563 |
|
88 |
+
| 0.2208 | 29.63 | 20000 | 0.6936 | 0.2531 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
|
91 |
### Framework versions
|