File size: 2,133 Bytes
bce3f9a 1914306 bce3f9a 3fbff29 158fd31 37385fc bce3f9a 1914306 bce3f9a 1914306 bce3f9a 1914306 bce3f9a e1e73c3 bce3f9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-genius
results: []
pipeline_tag: summarization
datasets:
- miscjose/genius
---
# mt5-small-finetuned-genius
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the [Genius](https://genius.com/) Music dataset found [here](https://www.cs.cornell.edu/~arb/data/genius-expertise/).
The song lyrics and song titles were preprocessed and used for fine-tuning.
You can view more examples of this model's inference on the following [Space](https://huggingface.co/spaces/miscjose/genius_summarization_space).
## Model description
Please visit: [google/mt5-small](https://huggingface.co/google/mt5-small)
## Intended uses & limitations
- Intended Uses: Given song lyrics, generate a summary.
- Limitations: Due to the nature of music, the model can generate summaries containing hate speech.
## Training and evaluation data
- 27.6K Training Samples
- 3.45 Validation Samples
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 7.9304 | 1.0 | 863 | 3.5226 | 14.235 | 6.78 | 14.206 | 14.168 |
| 3.8394 | 2.0 | 1726 | 3.0382 | 22.97 | 13.166 | 22.981 | 22.944 |
| 3.3799 | 3.0 | 2589 | 2.9010 | 24.932 | 14.54 | 24.929 | 24.919 |
| 3.2204 | 4.0 | 3452 | 2.8441 | 26.678 | 15.587 | 26.624 | 26.665 |
| 3.1498 | 5.0 | 4315 | 2.8363 | **26.827** | **15.696** | **26.773** | **26.793** |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.1
- Tokenizers 0.13.3
|