File size: 4,535 Bytes
d6bce15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
license: cc-by-nc-4.0
library_name: transformers
pipeline_tag: text-generation
tags:
- VILA
- VLM
---

# VILA Model Card

## Model details

**Model type:**
VILA is a visual language model (VLM) pretrained with interleaved image-text data at scale, enabling multi-image VLM. VILA is deployable on the edge, including Jetson Orin and laptop by AWQ 4bit quantization through TinyChat framework. We find: (1) image-text pairs are not enough, interleaved image-text is essential; (2) unfreezing LLM during interleaved image-text pre-training enables in-context learning; (3)re-blending text-only instruction data is crucial to boost both VLM and text-only performance. VILA unveils appealing capabilities, including: multi-image reasoning, in-context learning, visual chain-of-thought, and better world knowledge.

**Model date:**
VILA1.5-13b was trained in May 2024.

**Paper or resources for more information:**
https://github.com/NVLabs/VILA

```
@misc{lin2023vila,
      title={VILA: On Pre-training for Visual Language Models},
      author={Ji Lin and Hongxu Yin and Wei Ping and Yao Lu and Pavlo Molchanov and Andrew Tao and Huizi Mao and Jan Kautz and Mohammad Shoeybi and Song Han},
      year={2023},
      eprint={2312.07533},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

https://github.com/mit-han-lab/qserve
```
@article{lin2024qserve,
  title={QServe: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving},
  author={Lin*, Yujun and Tang*, Haotian and Yang*, Shang and Zhang, Zhekai and Xiao, Guangxuan and Gan, Chuang and Han, Song},
  journal={arXiv preprint arXiv:2405.04532},
  year={2024}
}
```

## License
- The code is released under the Apache 2.0 license as found in the [LICENSE](./LICENSE) file.
- The pretrained weights are released under the [CC-BY-NC-SA-4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en).
- The service is a research preview intended for non-commercial use only, and is subject to the following licenses and terms:
    - [Model License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA
    - [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI
    - [Dataset Licenses](https://github.com/Efficient-Large-Model/VILA/blob/main/data_prepare/LICENSE) for each one used during training.

**Where to send questions or comments about the model:**
https://github.com/NVLabs/VILA/issues

## Intended use
**Primary intended uses:**
The primary use of VILA is research on large multimodal models and chatbots.

**Primary intended users:**
The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.

## Model Architecture: 
**Architecture Type:** Transformer
**Network Architecture:** siglip, vicuna1.5

## Input:
**Input Type:** Image, Video, Text
**Input Format:** Red, Green, Blue; MP4 ;String
**Input Parameters:** 2D, 3D

## Output: 
**Output Type:** Text
**Output Format:** String

**Supported Hardware Microarchitecture Compatibility:**
* Ampere
* Jetson
* Hopper
* Lovelace

**[Preferred/Supported] Operating System(s):** <br>
Linux

## Model Version(s):
* VILA1.5-3B
* VILA1.5-3B-s2
* Llama-3-VILA1.5-8B
* VILA1.5-13B
* VILA1.5-40B
* VILA1.5-3B-AWQ
* VILA1.5-3B-s2-AWQ
* Llama-3-VILA1.5-8B-AWQ
* VILA1.5-13B-AWQ
* VILA1.5-40B-AWQ

## Training dataset
See [Dataset Preparation](https://github.com/NVLabs/VILA/blob/main/data_prepare/README.md) for more details.

** Data Collection Method by dataset
* [Hybrid: Automated, Human]

** Labeling Method by dataset
* [Hybrid: Automated, Human]

**Properties (Quantity, Dataset Descriptions, Sensor(s)):**
53 million image-text pairs or interleaved image text content.


## Evaluation dataset
A collection of 12 benchmarks, including 5 academic VQA benchmarks and 7 recent benchmarks specifically proposed for instruction-following LMMs.

## Inference:
**Engine:** [Tensor(RT), Triton, Or List Other Here]
* PyTorch
* TensorRT-LLM
* TinyChat

**Test Hardware:**
* A100
* Jetson Orin
* RTX 4090

## Ethical Considerations
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications.  When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.