Add SetFit model
Browse files- 1_Pooling/config.json +10 -0
- README.md +220 -0
- config.json +24 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +59 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/paraphrase-mpnet-base-v2
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: and importance of the climate crisis requires everyone to play their part.
|
14 |
+
- text: The Group has unused tax losses carried forward of 512m, primarily UK capital
|
15 |
+
losses, on which no deferred tax is recognised.
|
16 |
+
- text: If an acquirer of shares is not prepared to provide this declaration, the
|
17 |
+
Board may refuse to register him as a shareholder with the right to vote.
|
18 |
+
- text: The Company will also make every effort to improve the effectiveness of its
|
19 |
+
sustainability reporting.
|
20 |
+
- text: The Company maintains sufficient liquidity and has a variety of contingent
|
21 |
+
liquidity resources to manage liquidity across a range of economic scenarios.
|
22 |
+
inference: true
|
23 |
+
model-index:
|
24 |
+
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
25 |
+
results:
|
26 |
+
- task:
|
27 |
+
type: text-classification
|
28 |
+
name: Text Classification
|
29 |
+
dataset:
|
30 |
+
name: Unknown
|
31 |
+
type: unknown
|
32 |
+
split: test
|
33 |
+
metrics:
|
34 |
+
- type: accuracy
|
35 |
+
value: 0.8337531486146096
|
36 |
+
name: Accuracy
|
37 |
+
---
|
38 |
+
|
39 |
+
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
40 |
+
|
41 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
42 |
+
|
43 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
44 |
+
|
45 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
46 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
47 |
+
|
48 |
+
## Model Details
|
49 |
+
|
50 |
+
### Model Description
|
51 |
+
- **Model Type:** SetFit
|
52 |
+
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
|
53 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
54 |
+
- **Maximum Sequence Length:** 512 tokens
|
55 |
+
- **Number of Classes:** 2 classes
|
56 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
57 |
+
<!-- - **Language:** Unknown -->
|
58 |
+
<!-- - **License:** Unknown -->
|
59 |
+
|
60 |
+
### Model Sources
|
61 |
+
|
62 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
63 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
64 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
65 |
+
|
66 |
+
### Model Labels
|
67 |
+
| Label | Examples |
|
68 |
+
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
69 |
+
| 1.0 | <ul><li>'We believe that no company should prosper while violating the basic human rights of others whether through unlawful slavery, servitude, forced or compulsory labor, or otherwise exploitative means.'</li><li>'In addition to our onsite services, our ergonomics specialists provide ondemand virtual consulting to customers to help them assess their risks and offer effective solutions.'</li><li>'The Travelers Industrial Hygiene (IH) Laboratory, nationally accredited by the American Industrial Hygiene Association, provides specialized services to our commercial customers to help them understand occupational health exposures in order to minimize occupational diseases.'</li></ul> |
|
70 |
+
| 0.0 | <ul><li>'The decreases in the current period were offset, in part, by increases in conference and training expenditures incurred.'</li><li>'Environmental Responsibility As a core part of our business, we continually monitor, assess and respond not only to the risks but also to the opportunities posed by changing climate conditions.'</li><li>'Revenue derived from sales outside the Americas region increased primarily due to an increase from system sales in EIMEA and Japan, and an increase from services in EIMEA, Asia Pacific, and China, mostly offset by a decrease from sales of systems in China, which was largely due to COVID19related restrictions that occurred during the first quarter of fiscal year 2023.'</li></ul> |
|
71 |
+
|
72 |
+
## Evaluation
|
73 |
+
|
74 |
+
### Metrics
|
75 |
+
| Label | Accuracy |
|
76 |
+
|:--------|:---------|
|
77 |
+
| **all** | 0.8338 |
|
78 |
+
|
79 |
+
## Uses
|
80 |
+
|
81 |
+
### Direct Use for Inference
|
82 |
+
|
83 |
+
First install the SetFit library:
|
84 |
+
|
85 |
+
```bash
|
86 |
+
pip install setfit
|
87 |
+
```
|
88 |
+
|
89 |
+
Then you can load this model and run inference.
|
90 |
+
|
91 |
+
```python
|
92 |
+
from setfit import SetFitModel
|
93 |
+
|
94 |
+
# Download from the 🤗 Hub
|
95 |
+
model = SetFitModel.from_pretrained("mitra-mir/setfit-model-ESG-environmental")
|
96 |
+
# Run inference
|
97 |
+
preds = model("and importance of the climate crisis requires everyone to play their part.")
|
98 |
+
```
|
99 |
+
|
100 |
+
<!--
|
101 |
+
### Downstream Use
|
102 |
+
|
103 |
+
*List how someone could finetune this model on their own dataset.*
|
104 |
+
-->
|
105 |
+
|
106 |
+
<!--
|
107 |
+
### Out-of-Scope Use
|
108 |
+
|
109 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
110 |
+
-->
|
111 |
+
|
112 |
+
<!--
|
113 |
+
## Bias, Risks and Limitations
|
114 |
+
|
115 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
116 |
+
-->
|
117 |
+
|
118 |
+
<!--
|
119 |
+
### Recommendations
|
120 |
+
|
121 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
122 |
+
-->
|
123 |
+
|
124 |
+
## Training Details
|
125 |
+
|
126 |
+
### Training Set Metrics
|
127 |
+
| Training set | Min | Median | Max |
|
128 |
+
|:-------------|:----|:--------|:----|
|
129 |
+
| Word count | 3 | 25.4020 | 72 |
|
130 |
+
|
131 |
+
| Label | Training Sample Count |
|
132 |
+
|:------|:----------------------|
|
133 |
+
| 0.0 | 145 |
|
134 |
+
| 1.0 | 54 |
|
135 |
+
|
136 |
+
### Training Hyperparameters
|
137 |
+
- batch_size: (16, 16)
|
138 |
+
- num_epochs: (1, 1)
|
139 |
+
- max_steps: -1
|
140 |
+
- sampling_strategy: oversampling
|
141 |
+
- num_iterations: 20
|
142 |
+
- body_learning_rate: (2e-05, 2e-05)
|
143 |
+
- head_learning_rate: 2e-05
|
144 |
+
- loss: CosineSimilarityLoss
|
145 |
+
- distance_metric: cosine_distance
|
146 |
+
- margin: 0.25
|
147 |
+
- end_to_end: False
|
148 |
+
- use_amp: False
|
149 |
+
- warmup_proportion: 0.1
|
150 |
+
- l2_weight: 0.01
|
151 |
+
- seed: 42
|
152 |
+
- eval_max_steps: -1
|
153 |
+
- load_best_model_at_end: False
|
154 |
+
|
155 |
+
### Training Results
|
156 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
157 |
+
|:------:|:----:|:-------------:|:---------------:|
|
158 |
+
| 0.0020 | 1 | 0.4091 | - |
|
159 |
+
| 0.1004 | 50 | 0.1992 | - |
|
160 |
+
| 0.2008 | 100 | 0.0104 | - |
|
161 |
+
| 0.3012 | 150 | 0.0006 | - |
|
162 |
+
| 0.4016 | 200 | 0.0003 | - |
|
163 |
+
| 0.5020 | 250 | 0.0002 | - |
|
164 |
+
| 0.6024 | 300 | 0.0002 | - |
|
165 |
+
| 0.7028 | 350 | 0.0001 | - |
|
166 |
+
| 0.8032 | 400 | 0.0001 | - |
|
167 |
+
| 0.9036 | 450 | 0.0001 | - |
|
168 |
+
| 0.0020 | 1 | 0.25 | - |
|
169 |
+
| 0.1004 | 50 | 0.349 | - |
|
170 |
+
| 0.2008 | 100 | 0.047 | - |
|
171 |
+
| 0.3012 | 150 | 0.0172 | - |
|
172 |
+
| 0.4016 | 200 | 0.0023 | - |
|
173 |
+
| 0.5020 | 250 | 0.0002 | - |
|
174 |
+
| 0.6024 | 300 | 0.0002 | - |
|
175 |
+
| 0.7028 | 350 | 0.0003 | - |
|
176 |
+
| 0.8032 | 400 | 0.0001 | - |
|
177 |
+
| 0.9036 | 450 | 0.0001 | - |
|
178 |
+
|
179 |
+
### Framework Versions
|
180 |
+
- Python: 3.11.6
|
181 |
+
- SetFit: 1.1.0
|
182 |
+
- Sentence Transformers: 3.2.1
|
183 |
+
- Transformers: 4.43.4
|
184 |
+
- PyTorch: 2.4.1+cu121
|
185 |
+
- Datasets: 3.0.1
|
186 |
+
- Tokenizers: 0.19.1
|
187 |
+
|
188 |
+
## Citation
|
189 |
+
|
190 |
+
### BibTeX
|
191 |
+
```bibtex
|
192 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
193 |
+
doi = {10.48550/ARXIV.2209.11055},
|
194 |
+
url = {https://arxiv.org/abs/2209.11055},
|
195 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
196 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
197 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
198 |
+
publisher = {arXiv},
|
199 |
+
year = {2022},
|
200 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
201 |
+
}
|
202 |
+
```
|
203 |
+
|
204 |
+
<!--
|
205 |
+
## Glossary
|
206 |
+
|
207 |
+
*Clearly define terms in order to be accessible across audiences.*
|
208 |
+
-->
|
209 |
+
|
210 |
+
<!--
|
211 |
+
## Model Card Authors
|
212 |
+
|
213 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
214 |
+
-->
|
215 |
+
|
216 |
+
<!--
|
217 |
+
## Model Card Contact
|
218 |
+
|
219 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
220 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.43.4",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.2.1",
|
4 |
+
"transformers": "4.43.4",
|
5 |
+
"pytorch": "2.4.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd3b1582e58bc53f59b52d8cad2f826ff9c3cdf036b3fe5dbf925f1d2c63b8be
|
3 |
+
size 437967672
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe92f91d771b6ab8d8e49c0e15a1390fa36f80d478503309fe6bbff118bb3859
|
3 |
+
size 6959
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"104": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"30526": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": true,
|
49 |
+
"eos_token": "</s>",
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"model_max_length": 512,
|
52 |
+
"never_split": null,
|
53 |
+
"pad_token": "<pad>",
|
54 |
+
"sep_token": "</s>",
|
55 |
+
"strip_accents": null,
|
56 |
+
"tokenize_chinese_chars": true,
|
57 |
+
"tokenizer_class": "MPNetTokenizer",
|
58 |
+
"unk_token": "[UNK]"
|
59 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|