miyagawaorj commited on
Commit
2e6c9f3
1 Parent(s): 815cab2

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -12
README.md CHANGED
@@ -20,10 +20,10 @@ model-index:
20
  metrics:
21
  - name: Accuracy
22
  type: accuracy
23
- value: 0.9225
24
  - name: F1
25
  type: f1
26
- value: 0.9225152799408713
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -33,9 +33,9 @@ should probably proofread and complete it, then remove this comment. -->
33
 
34
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 0.2100
37
- - Accuracy: 0.9225
38
- - F1: 0.9225
39
 
40
  ## Model description
41
 
@@ -55,8 +55,8 @@ More information needed
55
 
56
  The following hyperparameters were used during training:
57
  - learning_rate: 2e-05
58
- - train_batch_size: 64
59
- - eval_batch_size: 64
60
  - seed: 42
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
@@ -64,15 +64,15 @@ The following hyperparameters were used during training:
64
 
65
  ### Training results
66
 
67
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
68
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
69
- | 0.793 | 1.0 | 250 | 0.2946 | 0.912 | 0.9103 |
70
- | 0.2423 | 2.0 | 500 | 0.2100 | 0.9225 | 0.9225 |
71
 
72
 
73
  ### Framework versions
74
 
75
  - Transformers 4.11.3
76
- - Pytorch 1.11.0+cu113
77
  - Datasets 1.16.1
78
  - Tokenizers 0.10.3
 
20
  metrics:
21
  - name: Accuracy
22
  type: accuracy
23
+ value: 0.941
24
  - name: F1
25
  type: f1
26
+ value: 0.9407981871026927
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
33
 
34
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.2275
37
+ - Accuracy: 0.941
38
+ - F1: 0.9408
39
 
40
  ## Model description
41
 
 
55
 
56
  The following hyperparameters were used during training:
57
  - learning_rate: 2e-05
58
+ - train_batch_size: 2
59
+ - eval_batch_size: 2
60
  - seed: 42
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
 
64
 
65
  ### Training results
66
 
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
68
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
69
+ | 0.4546 | 1.0 | 8000 | 0.2665 | 0.933 | 0.9318 |
70
+ | 0.2003 | 2.0 | 16000 | 0.2275 | 0.941 | 0.9408 |
71
 
72
 
73
  ### Framework versions
74
 
75
  - Transformers 4.11.3
76
+ - Pytorch 1.11.0
77
  - Datasets 1.16.1
78
  - Tokenizers 0.10.3