File size: 12,480 Bytes
f87cafb
4cebcbc
f87cafb
 
4cebcbc
 
cfb4e41
 
c73516c
85a6da2
37d864e
0a79f9e
 
 
 
 
 
 
 
 
 
 
37d864e
fb091b7
37d864e
6242d3b
 
 
 
 
 
 
 
 
 
94ec415
ebe7d3c
94ec415
 
 
 
f87cafb
6bfff72
 
 
 
 
4cebcbc
 
 
6bfff72
 
910d2eb
e0dfcca
ffebfc3
910d2eb
 
7c899d9
 
910d2eb
 
 
ffebfc3
910d2eb
4cebcbc
6bfff72
910d2eb
ffebfc3
910d2eb
 
6bfff72
4cebcbc
9aec2f2
 
 
 
 
 
 
 
4f8e3db
 
 
 
 
 
 
 
4cebcbc
 
4f8e3db
 
 
 
 
 
4cebcbc
4f19e0a
 
 
4f8e3db
8ca8633
4f8e3db
6bfff72
4f19e0a
 
4cebcbc
 
94ec415
 
 
 
 
 
0a79f9e
 
94ec415
 
 
 
 
 
0a79f9e
94ec415
4cebcbc
4f8e3db
4cebcbc
4f8e3db
6bfff72
4cebcbc
 
4f19e0a
4f8e3db
0a79f9e
94ec415
 
4f19e0a
 
612d613
6bfff72
612d613
6bfff72
0e2aca0
6bfff72
4cebcbc
6bfff72
e2808d7
545eea0
 
 
 
 
e2808d7
0b80417
fb091b7
6bfff72
0e2aca0
6bfff72
 
 
63ded27
 
 
 
 
6bfff72
 
 
 
 
 
 
 
 
 
0e2aca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bfff72
 
 
 
 
 
 
0e2aca0
e2808d7
94ec415
 
e2808d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70c7250
4cebcbc
6bfff72
4cebcbc
 
 
 
 
 
82d6c5a
8ca8633
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
---

language: en
license: mit
tags:
- keyphrase-extraction
datasets:
- midas/inspec
metrics:
- seqeval
widget:
- text: "Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document. 
Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading 
it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail 
and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents, 
this process can take a lot of time. 

Here is where Artificial Intelligence comes in. Currently, classical machine learning methods, that use statistical 
and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture 
the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency, 
occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies 
and context of words in a text."
  example_title: "Example 1"
- text: "In this work, we explore how to learn task specific language models aimed towards learning rich representation of keyphrases from text documents. We experiment with different masking strategies for pre-training transformer language models (LMs) in discriminative as well as generative settings. In the discriminative setting, we introduce a new pre-training objective - Keyphrase Boundary Infilling with Replacement (KBIR), showing large gains in performance (up to 9.26 points in F1) over SOTA, when LM pre-trained using KBIR is fine-tuned for the task of keyphrase extraction. In the generative setting, we introduce a new pre-training setup for BART - KeyBART, that reproduces the keyphrases related to the input text in the CatSeq format, instead of the denoised original input. This also led to gains in performance (up to 4.33 points inF1@M) over SOTA for keyphrase generation. Additionally, we also fine-tune the pre-trained language models on named entity recognition(NER), question answering (QA), relation extraction (RE), abstractive summarization and achieve comparable performance with that of the SOTA, showing that learning rich representation of keyphrases is indeed beneficial for many other fundamental NLP tasks."
  example_title: "Example 2"
model-index:
- name: DeDeckerThomas/keyphrase-extraction-kbir-inspec
  results:
  - task: 
      type: keyphrase-extraction
      name: Keyphrase Extraction
    dataset:
      type: midas/inspec
      name: inspec
    metrics:
      - type: F1 (Seqeval)
        value: 0.588
        name: F1 (Seqeval)
      - type: F1@M
        value: 0.564
        name: F1@M
---
# πŸ”‘ Keyphrase Extraction Model: KBIR-inspec
Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document. Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents, this process can take a lot of time ⏳. 

Here is where Artificial Intelligence πŸ€– comes in. Currently, classical machine learning methods, that use statistical and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency, occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies and context of words in a text.



## πŸ““ Model Description
This model uses [KBIR](https://huggingface.co/bloomberg/KBIR) as its base model and fine-tunes it on the [Inspec dataset](https://huggingface.co/datasets/midas/inspec). KBIR or Keyphrase Boundary Infilling with Replacement is a pre-trained model which utilizes a multi-task learning setup for optimizing a combined loss of Masked Language Modeling (MLM), Keyphrase Boundary Infilling (KBI) and Keyphrase Replacement Classification (KRC).
You can find more information about the architecture in this [paper](https://arxiv.org/abs/2112.08547).

Keyphrase extraction models are transformer models fine-tuned as a token classification problem where each word in the document is classified as being part of a keyphrase or not.

| Label | Description                     |
| ----- | ------------------------------- |
| B-KEY | At the beginning of a keyphrase |
| I-KEY | Inside a keyphrase              |
| O     | Outside a keyphrase             |

Kulkarni, Mayank, Debanjan Mahata, Ravneet Arora, and Rajarshi Bhowmik. "Learning Rich Representation of Keyphrases from Text." arXiv preprint arXiv:2112.08547 (2021).

Sahrawat, Dhruva, Debanjan Mahata, Haimin Zhang, Mayank Kulkarni, Agniv Sharma, Rakesh Gosangi, Amanda Stent, Yaman Kumar, Rajiv Ratn Shah, and Roger Zimmermann. "Keyphrase extraction as sequence labeling using contextualized embeddings." In European Conference on Information Retrieval, pp. 328-335. Springer, Cham, 2020.

## βœ‹ Intended Uses & Limitations
### πŸ›‘ Limitations
* This keyphrase extraction model is very domain-specific and will perform very well on abstracts of scientific papers. It's not recommended to use this model for other domains, but you are free to test it out.
* Only works for English documents.

### ❓ How To Use
```python
from transformers import (
    TokenClassificationPipeline,
    AutoModelForTokenClassification,
    AutoTokenizer,
)
from transformers.pipelines import AggregationStrategy
import numpy as np

# Define keyphrase extraction pipeline
class KeyphraseExtractionPipeline(TokenClassificationPipeline):
    def __init__(self, model, *args, **kwargs):
        super().__init__(
            model=AutoModelForTokenClassification.from_pretrained(model),
            tokenizer=AutoTokenizer.from_pretrained(model),
            *args,
            **kwargs
        )

    def postprocess(self, model_outputs):
        results = super().postprocess(
            model_outputs=model_outputs,
            aggregation_strategy=AggregationStrategy.SIMPLE,
        )
        return np.unique([result.get("word").strip() for result in results])

```

```python
# Load pipeline
model_name = "ml6team/keyphrase-extraction-kbir-inspec"
extractor = KeyphraseExtractionPipeline(model=model_name)

```
```python
# Inference
text = """
Keyphrase extraction is a technique in text analysis where you extract the
important keyphrases from a document. Thanks to these keyphrases humans can
understand the content of a text very quickly and easily without reading it
completely. Keyphrase extraction was first done primarily by human annotators,
who read the text in detail and then wrote down the most important keyphrases.
The disadvantage is that if you work with a lot of documents, this process
can take a lot of time. 

Here is where Artificial Intelligence comes in. Currently, classical machine
learning methods, that use statistical and linguistic features, are widely used
for the extraction process. Now with deep learning, it is possible to capture
the semantic meaning of a text even better than these classical methods.
Classical methods look at the frequency, occurrence and order of words
in the text, whereas these neural approaches can capture long-term
semantic dependencies and context of words in a text.
""".replace("\n", " ")

keyphrases = extractor(text)

print(keyphrases)

```

```
# Output
['Artificial Intelligence' 'Keyphrase extraction' 'deep learning'
 'linguistic features' 'machine learning' 'semantic meaning'
 'text analysis']
```

## πŸ“š Training Dataset
[Inspec](https://huggingface.co/datasets/midas/inspec) is a keyphrase extraction/generation dataset consisting of 2000 English scientific papers from the scientific domains of Computers and Control and Information Technology published between 1998 to 2002. The keyphrases are annotated by professional indexers or editors.

You can find more information in the [paper](https://dl.acm.org/doi/10.3115/1119355.1119383).

## πŸ‘·β€β™‚οΈ Training Procedure

### Training Parameters

| Parameter | Value |
| --------- | ------|
| Learning Rate | 1e-4 |
| Epochs | 50 |
| Early Stopping Patience | 3 |

### Preprocessing
The documents in the dataset are already preprocessed into list of words with the corresponding labels. The only thing that must be done is tokenization and the realignment of the labels so that they correspond with the right subword tokens.

```python
from datasets import load_dataset
from transformers import AutoTokenizer

# Labels
label_list = ["B", "I", "O"]
lbl2idx = {"B": 0, "I": 1, "O": 2}
idx2label = {0: "B", 1: "I", 2: "O"}

# Tokenizer
tokenizer = AutoTokenizer.from_pretrained("bloomberg/KBIR", add_prefix_space=True)
max_length = 512

# Dataset parameters
dataset_full_name = "midas/inspec"
dataset_subset = "raw"
dataset_document_column = "document"
dataset_biotags_column = "doc_bio_tags"

def preprocess_fuction(all_samples_per_split):
    tokenized_samples = tokenizer.batch_encode_plus(
        all_samples_per_split[dataset_document_column],
        padding="max_length",
        truncation=True,
        is_split_into_words=True,
        max_length=max_length,
    )
    total_adjusted_labels = []
    for k in range(0, len(tokenized_samples["input_ids"])):
        prev_wid = -1
        word_ids_list = tokenized_samples.word_ids(batch_index=k)
        existing_label_ids = all_samples_per_split[dataset_biotags_column][k]
        i = -1
        adjusted_label_ids = []

        for wid in word_ids_list:
            if wid is None:
                adjusted_label_ids.append(lbl2idx["O"])
            elif wid != prev_wid:
                i = i + 1
                adjusted_label_ids.append(lbl2idx[existing_label_ids[i]])
                prev_wid = wid
            else:
                adjusted_label_ids.append(
                    lbl2idx[
                        f"{'I' if existing_label_ids[i] == 'B' else existing_label_ids[i]}"
                    ]
                )

        total_adjusted_labels.append(adjusted_label_ids)
    tokenized_samples["labels"] = total_adjusted_labels
    return tokenized_samples

# Load dataset
dataset = load_dataset(dataset_full_name, dataset_subset)

# Preprocess dataset
tokenized_dataset = dataset.map(preprocess_fuction, batched=True)
    
```

### Postprocessing (Without Pipeline Function)
If you do not use the pipeline function, you must filter out the B and I labeled tokens. Each B and I will then be merged into a keyphrase. Finally, you need to strip the keyphrases to make sure all unnecessary spaces have been removed.
```python
# Define post_process functions
def concat_tokens_by_tag(keyphrases):
    keyphrase_tokens = []
    for id, label in keyphrases:
        if label == "B":
            keyphrase_tokens.append([id])
        elif label == "I":
            if len(keyphrase_tokens) > 0:
                keyphrase_tokens[len(keyphrase_tokens) - 1].append(id)
    return keyphrase_tokens


def extract_keyphrases(example, predictions, tokenizer, index=0):
    keyphrases_list = [
        (id, idx2label[label])
        for id, label in zip(
            np.array(example["input_ids"]).squeeze().tolist(), predictions[index]
        )
        if idx2label[label] in ["B", "I"]
    ]

    processed_keyphrases = concat_tokens_by_tag(keyphrases_list)
    extracted_kps = tokenizer.batch_decode(
        processed_keyphrases,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=True,
    )
    return np.unique([kp.strip() for kp in extracted_kps])

```
## πŸ“ Evaluation Results

Traditional evaluation methods are the precision, recall and F1-score @k,m where k is the number that stands for the first k predicted keyphrases and m for the average amount of predicted keyphrases.
The model achieves the following results on the Inspec test set:

| Dataset           | P@5  | R@5  | F1@5 | P@10 | R@10 | F1@10 | P@M  | R@M  | F1@M |
|:-----------------:|:----:|:----:|:----:|:----:|:----:|:-----:|:----:|:----:|:----:|
| Inspec Test Set   | 0.53 | 0.47 | 0.46 | 0.36 | 0.58 | 0.41  | 0.58 | 0.60 | 0.56 |

## 🚨 Issues
Please feel free to start discussions in the Community Tab.