mljn commited on
Commit
f4fd2ff
1 Parent(s): b283271

End of training

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/deberta-v3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: unga-climate-classifier
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # unga-climate-classifier
17
+
18
+ This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0936
21
+ - Accuracy: 0.9798
22
+ - F1 Macro: 0.9765
23
+ - Accuracy Balanced: 0.9751
24
+ - F1 Micro: 0.9798
25
+ - Precision Macro: 0.9780
26
+ - Recall Macro: 0.9751
27
+ - Precision Micro: 0.9798
28
+ - Recall Micro: 0.9798
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 80
50
+ - seed: 42
51
+ - gradient_accumulation_steps: 2
52
+ - total_train_batch_size: 32
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - lr_scheduler_warmup_ratio: 0.06
56
+ - num_epochs: 5
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Accuracy Balanced | F1 Micro | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
61
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:|
62
+ | No log | 1.0 | 123 | 0.1778 | 0.9609 | 0.9543 | 0.9510 | 0.9609 | 0.9577 | 0.9510 | 0.9609 | 0.9609 |
63
+ | No log | 2.0 | 246 | 0.1614 | 0.9680 | 0.9626 | 0.9593 | 0.9680 | 0.9661 | 0.9593 | 0.9680 | 0.9680 |
64
+ | No log | 3.0 | 369 | 0.1598 | 0.9680 | 0.9626 | 0.9593 | 0.9680 | 0.9661 | 0.9593 | 0.9680 | 0.9680 |
65
+ | No log | 4.0 | 492 | 0.1191 | 0.9703 | 0.9653 | 0.9610 | 0.9703 | 0.9699 | 0.9610 | 0.9703 | 0.9703 |
66
+ | 0.1357 | 5.0 | 615 | 0.1400 | 0.9727 | 0.9681 | 0.9638 | 0.9727 | 0.9727 | 0.9638 | 0.9727 | 0.9727 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.36.2
72
+ - Pytorch 2.1.0+cu121
73
+ - Datasets 2.6.0
74
+ - Tokenizers 0.15.1