End of training
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/deberta-v3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: unga-climate-classifier
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# unga-climate-classifier
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0936
|
21 |
+
- Accuracy: 0.9798
|
22 |
+
- F1 Macro: 0.9765
|
23 |
+
- Accuracy Balanced: 0.9751
|
24 |
+
- F1 Micro: 0.9798
|
25 |
+
- Precision Macro: 0.9780
|
26 |
+
- Recall Macro: 0.9751
|
27 |
+
- Precision Micro: 0.9798
|
28 |
+
- Recall Micro: 0.9798
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 2e-05
|
48 |
+
- train_batch_size: 16
|
49 |
+
- eval_batch_size: 80
|
50 |
+
- seed: 42
|
51 |
+
- gradient_accumulation_steps: 2
|
52 |
+
- total_train_batch_size: 32
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- lr_scheduler_warmup_ratio: 0.06
|
56 |
+
- num_epochs: 5
|
57 |
+
|
58 |
+
### Training results
|
59 |
+
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Accuracy Balanced | F1 Micro | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
|
61 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:|
|
62 |
+
| No log | 1.0 | 123 | 0.1778 | 0.9609 | 0.9543 | 0.9510 | 0.9609 | 0.9577 | 0.9510 | 0.9609 | 0.9609 |
|
63 |
+
| No log | 2.0 | 246 | 0.1614 | 0.9680 | 0.9626 | 0.9593 | 0.9680 | 0.9661 | 0.9593 | 0.9680 | 0.9680 |
|
64 |
+
| No log | 3.0 | 369 | 0.1598 | 0.9680 | 0.9626 | 0.9593 | 0.9680 | 0.9661 | 0.9593 | 0.9680 | 0.9680 |
|
65 |
+
| No log | 4.0 | 492 | 0.1191 | 0.9703 | 0.9653 | 0.9610 | 0.9703 | 0.9699 | 0.9610 | 0.9703 | 0.9703 |
|
66 |
+
| 0.1357 | 5.0 | 615 | 0.1400 | 0.9727 | 0.9681 | 0.9638 | 0.9727 | 0.9727 | 0.9638 | 0.9727 | 0.9727 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.36.2
|
72 |
+
- Pytorch 2.1.0+cu121
|
73 |
+
- Datasets 2.6.0
|
74 |
+
- Tokenizers 0.15.1
|