--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: unga-climate-classifier results: [] --- # unga-climate-classifier This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0807 - Accuracy: 0.975 - F1 Macro: 0.9710 - Accuracy Balanced: 0.9715 - F1 Micro: 0.975 - Precision Macro: 0.9705 - Recall Macro: 0.9715 - Precision Micro: 0.975 - Recall Micro: 0.975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 80 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Accuracy Balanced | F1 Micro | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| | No log | 1.0 | 123 | 0.1057 | 0.9726 | 0.9675 | 0.9583 | 0.9726 | 0.9783 | 0.9583 | 0.9726 | 0.9726 | | No log | 2.0 | 246 | 0.1102 | 0.9726 | 0.9683 | 0.9697 | 0.9726 | 0.9669 | 0.9697 | 0.9726 | 0.9726 | | No log | 3.0 | 369 | 0.0894 | 0.9798 | 0.9763 | 0.9729 | 0.9798 | 0.9800 | 0.9729 | 0.9798 | 0.9798 | | No log | 4.0 | 492 | 0.1098 | 0.9762 | 0.9723 | 0.9723 | 0.9762 | 0.9723 | 0.9723 | 0.9762 | 0.9762 | | 0.1374 | 5.0 | 615 | 0.1026 | 0.9798 | 0.9763 | 0.9729 | 0.9798 | 0.9800 | 0.9729 | 0.9798 | 0.9798 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.5.0+cu121 - Datasets 2.6.0 - Tokenizers 0.15.2