--- base_model: tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1 datasets: - lmsys/lmsys-chat-1m - argilla/magpie-ultra-v0.1 language: - en - ja library_name: transformers license: llama3.1 pipeline_tag: text-generation tags: - mlx model_type: llama --- # mlx-community/Llama-3.1-Swallow-70B-Instruct-v0.1-4bit The Model [mlx-community/Llama-3.1-Swallow-70B-Instruct-v0.1-4bit](https://huggingface.co/mlx-community/Llama-3.1-Swallow-70B-Instruct-v0.1-4bit) was converted to MLX format from [tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1) using mlx-lm version **0.19.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Llama-3.1-Swallow-70B-Instruct-v0.1-4bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```