Commit
•
43392a2
1
Parent(s):
06db60a
Update model (#1)
Browse files- Update model (8afb82ae7fe7ab38204ed782465f7d32f65419ed)
Co-authored-by: Anthony DePasquale <[email protected]>
- config.json +2 -1
- configuration_phi3.py +227 -200
- model.safetensors +2 -2
- modeling_phi3.py +0 -0
- sample_finetune.py +214 -129
- special_tokens_map.json +1 -4
- tokenizer.json +7 -278
- tokenizer_config.json +10 -228
config.json
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
"architectures": [
|
3 |
"Phi3ForCausalLM"
|
4 |
],
|
|
|
5 |
"attention_dropout": 0.0,
|
6 |
"auto_map": {
|
7 |
"AutoConfig": "configuration_phi3.Phi3Config",
|
@@ -32,7 +33,7 @@
|
|
32 |
"sliding_window": 2047,
|
33 |
"tie_word_embeddings": false,
|
34 |
"torch_dtype": "bfloat16",
|
35 |
-
"transformers_version": "4.
|
36 |
"use_cache": true,
|
37 |
"vocab_size": 32064
|
38 |
}
|
|
|
2 |
"architectures": [
|
3 |
"Phi3ForCausalLM"
|
4 |
],
|
5 |
+
"attention_bias": false,
|
6 |
"attention_dropout": 0.0,
|
7 |
"auto_map": {
|
8 |
"AutoConfig": "configuration_phi3.Phi3Config",
|
|
|
33 |
"sliding_window": 2047,
|
34 |
"tie_word_embeddings": false,
|
35 |
"torch_dtype": "bfloat16",
|
36 |
+
"transformers_version": "4.40.2",
|
37 |
"use_cache": true,
|
38 |
"vocab_size": 32064
|
39 |
}
|
configuration_phi3.py
CHANGED
@@ -1,200 +1,227 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
""" Phi-3 model configuration"""
|
17 |
-
|
18 |
-
|
19 |
-
from transformers.configuration_utils import PretrainedConfig
|
20 |
-
from transformers.utils import logging
|
21 |
-
|
22 |
-
|
23 |
-
logger = logging.get_logger(__name__)
|
24 |
-
|
25 |
-
PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
-
"microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json",
|
27 |
-
"microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json",
|
28 |
-
}
|
29 |
-
|
30 |
-
|
31 |
-
class Phi3Config(PretrainedConfig):
|
32 |
-
r"""
|
33 |
-
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
|
34 |
-
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
-
defaults will yield a similar configuration to that of the
|
36 |
-
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
37 |
-
|
38 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
-
documentation from [`PretrainedConfig`] for more information.
|
40 |
-
|
41 |
-
Args:
|
42 |
-
vocab_size (`int`, *optional*, defaults to 32064):
|
43 |
-
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
44 |
-
`inputs_ids` passed when calling [`Phi3Model`].
|
45 |
-
hidden_size (`int`, *optional*, defaults to 3072):
|
46 |
-
Dimension of the hidden representations.
|
47 |
-
intermediate_size (`int`, *optional*, defaults to 8192):
|
48 |
-
Dimension of the MLP representations.
|
49 |
-
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
-
Number of hidden layers in the Transformer decoder.
|
51 |
-
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
-
Number of attention heads for each attention layer in the Transformer decoder.
|
53 |
-
num_key_value_heads (`int`, *optional*):
|
54 |
-
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
-
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
-
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
-
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
-
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
-
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
-
`num_attention_heads`.
|
61 |
-
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
62 |
-
Dropout probability for mlp outputs.
|
63 |
-
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
64 |
-
The dropout ratio for the embeddings.
|
65 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
66 |
-
The dropout ratio after computing the attention scores.
|
67 |
-
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
68 |
-
The non-linear activation function (function or string) in the decoder.
|
69 |
-
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
70 |
-
The maximum sequence length that this model might ever be used with.
|
71 |
-
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
72 |
-
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
73 |
-
original RoPE embeddings when using long scaling.
|
74 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
75 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
76 |
-
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
77 |
-
The epsilon value used for the RMSNorm.
|
78 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
79 |
-
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
80 |
-
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
81 |
-
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
82 |
-
Whether to tie weight embeddings
|
83 |
-
rope_theta (`float`, *optional*, defaults to 10000.0):
|
84 |
-
The base period of the RoPE embeddings.
|
85 |
-
rope_scaling (`dict`, *optional*):
|
86 |
-
The scaling
|
87 |
-
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
|
88 |
-
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
89 |
-
divided by the number of attention heads divided by 2.
|
90 |
-
|
91 |
-
The id of the "
|
92 |
-
|
93 |
-
The id of the
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
>>>
|
103 |
-
|
104 |
-
|
105 |
-
>>>
|
106 |
-
|
107 |
-
|
108 |
-
>>>
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
self.
|
144 |
-
self.
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
self.
|
153 |
-
self.
|
154 |
-
self.
|
155 |
-
self.
|
156 |
-
self.
|
157 |
-
self.
|
158 |
-
self.
|
159 |
-
self.
|
160 |
-
self.
|
161 |
-
self.
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
)
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" Phi-3 model configuration"""
|
17 |
+
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
+
"microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json",
|
27 |
+
"microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json",
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
class Phi3Config(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
|
34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the
|
36 |
+
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
37 |
+
|
38 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
+
documentation from [`PretrainedConfig`] for more information.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
43 |
+
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`Phi3Model`].
|
45 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
46 |
+
Dimension of the hidden representations.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
48 |
+
Dimension of the MLP representations.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
+
Number of hidden layers in the Transformer decoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
53 |
+
num_key_value_heads (`int`, *optional*):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
+
`num_attention_heads`.
|
61 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
62 |
+
Dropout probability for mlp outputs.
|
63 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
64 |
+
The dropout ratio for the embeddings.
|
65 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
66 |
+
The dropout ratio after computing the attention scores.
|
67 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
68 |
+
The non-linear activation function (function or string) in the decoder.
|
69 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
70 |
+
The maximum sequence length that this model might ever be used with.
|
71 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
72 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
73 |
+
original RoPE embeddings when using long scaling.
|
74 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
75 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
76 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
77 |
+
The epsilon value used for the RMSNorm.
|
78 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
79 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
80 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
81 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
82 |
+
Whether to tie weight embeddings
|
83 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
84 |
+
The base period of the RoPE embeddings.
|
85 |
+
rope_scaling (`dict`, *optional*):
|
86 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
87 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
|
88 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
89 |
+
divided by the number of attention heads divided by 2.
|
90 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
91 |
+
The id of the "beginning-of-sequence" token.
|
92 |
+
eos_token_id (`int`, *optional*, defaults to 32000):
|
93 |
+
The id of the "end-of-sequence" token.
|
94 |
+
pad_token_id (`int`, *optional*, defaults to 32000):
|
95 |
+
The id of the padding token.
|
96 |
+
sliding_window (`int`, *optional*):
|
97 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
98 |
+
|
99 |
+
Example:
|
100 |
+
|
101 |
+
```python
|
102 |
+
>>> from transformers import Phi3Model, Phi3Config
|
103 |
+
|
104 |
+
>>> # Initializing a Phi-3 style configuration
|
105 |
+
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
106 |
+
|
107 |
+
>>> # Initializing a model from the configuration
|
108 |
+
>>> model = Phi3Model(configuration)
|
109 |
+
|
110 |
+
>>> # Accessing the model configuration
|
111 |
+
>>> configuration = model.config
|
112 |
+
```"""
|
113 |
+
|
114 |
+
model_type = "phi3"
|
115 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vocab_size=32064,
|
120 |
+
hidden_size=3072,
|
121 |
+
intermediate_size=8192,
|
122 |
+
num_hidden_layers=32,
|
123 |
+
num_attention_heads=32,
|
124 |
+
num_key_value_heads=None,
|
125 |
+
resid_pdrop=0.0,
|
126 |
+
embd_pdrop=0.0,
|
127 |
+
attention_dropout=0.0,
|
128 |
+
hidden_act="silu",
|
129 |
+
max_position_embeddings=4096,
|
130 |
+
original_max_position_embeddings=4096,
|
131 |
+
initializer_range=0.02,
|
132 |
+
rms_norm_eps=1e-5,
|
133 |
+
use_cache=True,
|
134 |
+
tie_word_embeddings=False,
|
135 |
+
rope_theta=10000.0,
|
136 |
+
rope_scaling=None,
|
137 |
+
bos_token_id=1,
|
138 |
+
eos_token_id=32000,
|
139 |
+
pad_token_id=32000,
|
140 |
+
sliding_window=None,
|
141 |
+
**kwargs,
|
142 |
+
):
|
143 |
+
self.vocab_size = vocab_size
|
144 |
+
self.hidden_size = hidden_size
|
145 |
+
self.intermediate_size = intermediate_size
|
146 |
+
self.num_hidden_layers = num_hidden_layers
|
147 |
+
self.num_attention_heads = num_attention_heads
|
148 |
+
|
149 |
+
if num_key_value_heads is None:
|
150 |
+
num_key_value_heads = num_attention_heads
|
151 |
+
|
152 |
+
self.num_key_value_heads = num_key_value_heads
|
153 |
+
self.resid_pdrop = resid_pdrop
|
154 |
+
self.embd_pdrop = embd_pdrop
|
155 |
+
self.attention_dropout = attention_dropout
|
156 |
+
self.hidden_act = hidden_act
|
157 |
+
self.max_position_embeddings = max_position_embeddings
|
158 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
159 |
+
self.initializer_range = initializer_range
|
160 |
+
self.rms_norm_eps = rms_norm_eps
|
161 |
+
self.use_cache = use_cache
|
162 |
+
self.rope_theta = rope_theta
|
163 |
+
self.rope_scaling = rope_scaling
|
164 |
+
self._rope_scaling_adjustment()
|
165 |
+
self._rope_scaling_validation()
|
166 |
+
self.sliding_window = sliding_window
|
167 |
+
|
168 |
+
super().__init__(
|
169 |
+
bos_token_id=bos_token_id,
|
170 |
+
eos_token_id=eos_token_id,
|
171 |
+
pad_token_id=pad_token_id,
|
172 |
+
tie_word_embeddings=tie_word_embeddings,
|
173 |
+
**kwargs,
|
174 |
+
)
|
175 |
+
|
176 |
+
def _rope_scaling_adjustment(self):
|
177 |
+
"""
|
178 |
+
Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
|
179 |
+
"""
|
180 |
+
if self.rope_scaling is None:
|
181 |
+
return
|
182 |
+
|
183 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
184 |
+
|
185 |
+
# For backward compatibility if previous version used "su" or "yarn"
|
186 |
+
if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
|
187 |
+
self.rope_scaling["type"] = "longrope"
|
188 |
+
|
189 |
+
def _rope_scaling_validation(self):
|
190 |
+
"""
|
191 |
+
Validate the `rope_scaling` configuration.
|
192 |
+
"""
|
193 |
+
if self.rope_scaling is None:
|
194 |
+
return
|
195 |
+
|
196 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
197 |
+
raise ValueError(
|
198 |
+
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
|
199 |
+
f"got {self.rope_scaling}"
|
200 |
+
)
|
201 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
202 |
+
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
203 |
+
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
204 |
+
if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
|
205 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
|
206 |
+
if not (
|
207 |
+
isinstance(rope_scaling_short_factor, list)
|
208 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
209 |
+
):
|
210 |
+
raise ValueError(
|
211 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
212 |
+
)
|
213 |
+
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
|
214 |
+
raise ValueError(
|
215 |
+
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
|
216 |
+
)
|
217 |
+
if not (
|
218 |
+
isinstance(rope_scaling_long_factor, list)
|
219 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
220 |
+
):
|
221 |
+
raise ValueError(
|
222 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
223 |
+
)
|
224 |
+
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
|
225 |
+
raise ValueError(
|
226 |
+
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
|
227 |
+
)
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d75680621a09474f6601e9176f2f61f92a5e4c079d68d583901f51699fda50a
|
3 |
+
size 2149696167
|
modeling_phi3.py
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
sample_finetune.py
CHANGED
@@ -1,129 +1,214 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
)
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
#
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import logging
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
from datasets import load_dataset
|
6 |
+
from peft import LoraConfig
|
7 |
+
import torch
|
8 |
+
import transformers
|
9 |
+
from trl import SFTTrainer
|
10 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig
|
11 |
+
|
12 |
+
"""
|
13 |
+
A simple example on using SFTTrainer and Accelerate to finetune Phi-3 models. For
|
14 |
+
a more advanced example, please follow HF alignment-handbook/scripts/run_sft.py.
|
15 |
+
This example has utilized DeepSpeed ZeRO3 offload to reduce the memory usage. The
|
16 |
+
script can be run on V100 or later generation GPUs. Here are some suggestions on
|
17 |
+
futher reducing memory consumption:
|
18 |
+
- reduce batch size
|
19 |
+
- decrease lora dimension
|
20 |
+
- restrict lora target modules
|
21 |
+
Please follow these steps to run the script:
|
22 |
+
1. Install dependencies:
|
23 |
+
conda install -c conda-forge accelerate
|
24 |
+
pip3 install -i https://pypi.org/simple/ bitsandbytes
|
25 |
+
pip3 install peft transformers trl datasets
|
26 |
+
pip3 install deepspeed
|
27 |
+
2. Setup accelerate and deepspeed config based on the machine used:
|
28 |
+
accelerate config
|
29 |
+
Here is a sample config for deepspeed zero3:
|
30 |
+
compute_environment: LOCAL_MACHINE
|
31 |
+
debug: false
|
32 |
+
deepspeed_config:
|
33 |
+
gradient_accumulation_steps: 1
|
34 |
+
offload_optimizer_device: none
|
35 |
+
offload_param_device: none
|
36 |
+
zero3_init_flag: true
|
37 |
+
zero3_save_16bit_model: true
|
38 |
+
zero_stage: 3
|
39 |
+
distributed_type: DEEPSPEED
|
40 |
+
downcast_bf16: 'no'
|
41 |
+
enable_cpu_affinity: false
|
42 |
+
machine_rank: 0
|
43 |
+
main_training_function: main
|
44 |
+
mixed_precision: bf16
|
45 |
+
num_machines: 1
|
46 |
+
num_processes: 4
|
47 |
+
rdzv_backend: static
|
48 |
+
same_network: true
|
49 |
+
tpu_env: []
|
50 |
+
tpu_use_cluster: false
|
51 |
+
tpu_use_sudo: false
|
52 |
+
use_cpu: false
|
53 |
+
3. check accelerate config:
|
54 |
+
accelerate env
|
55 |
+
4. Run the code:
|
56 |
+
accelerate launch sample_finetune.py
|
57 |
+
"""
|
58 |
+
|
59 |
+
logger = logging.getLogger(__name__)
|
60 |
+
|
61 |
+
|
62 |
+
###################
|
63 |
+
# Hyper-parameters
|
64 |
+
###################
|
65 |
+
training_config = {
|
66 |
+
"bf16": True,
|
67 |
+
"do_eval": False,
|
68 |
+
"learning_rate": 5.0e-06,
|
69 |
+
"log_level": "info",
|
70 |
+
"logging_steps": 20,
|
71 |
+
"logging_strategy": "steps",
|
72 |
+
"lr_scheduler_type": "cosine",
|
73 |
+
"num_train_epochs": 1,
|
74 |
+
"max_steps": -1,
|
75 |
+
"output_dir": "./checkpoint_dir",
|
76 |
+
"overwrite_output_dir": True,
|
77 |
+
"per_device_eval_batch_size": 4,
|
78 |
+
"per_device_train_batch_size": 4,
|
79 |
+
"remove_unused_columns": True,
|
80 |
+
"save_steps": 100,
|
81 |
+
"save_total_limit": 1,
|
82 |
+
"seed": 0,
|
83 |
+
"gradient_checkpointing": True,
|
84 |
+
"gradient_checkpointing_kwargs":{"use_reentrant": False},
|
85 |
+
"gradient_accumulation_steps": 1,
|
86 |
+
"warmup_ratio": 0.2,
|
87 |
+
}
|
88 |
+
|
89 |
+
peft_config = {
|
90 |
+
"r": 16,
|
91 |
+
"lora_alpha": 32,
|
92 |
+
"lora_dropout": 0.05,
|
93 |
+
"bias": "none",
|
94 |
+
"task_type": "CAUSAL_LM",
|
95 |
+
"target_modules": "all-linear",
|
96 |
+
"modules_to_save": None,
|
97 |
+
}
|
98 |
+
train_conf = TrainingArguments(**training_config)
|
99 |
+
peft_conf = LoraConfig(**peft_config)
|
100 |
+
|
101 |
+
|
102 |
+
###############
|
103 |
+
# Setup logging
|
104 |
+
###############
|
105 |
+
logging.basicConfig(
|
106 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
107 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
108 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
109 |
+
)
|
110 |
+
log_level = train_conf.get_process_log_level()
|
111 |
+
logger.setLevel(log_level)
|
112 |
+
datasets.utils.logging.set_verbosity(log_level)
|
113 |
+
transformers.utils.logging.set_verbosity(log_level)
|
114 |
+
transformers.utils.logging.enable_default_handler()
|
115 |
+
transformers.utils.logging.enable_explicit_format()
|
116 |
+
|
117 |
+
# Log on each process a small summary
|
118 |
+
logger.warning(
|
119 |
+
f"Process rank: {train_conf.local_rank}, device: {train_conf.device}, n_gpu: {train_conf.n_gpu}"
|
120 |
+
+ f" distributed training: {bool(train_conf.local_rank != -1)}, 16-bits training: {train_conf.fp16}"
|
121 |
+
)
|
122 |
+
logger.info(f"Training/evaluation parameters {train_conf}")
|
123 |
+
logger.info(f"PEFT parameters {peft_conf}")
|
124 |
+
|
125 |
+
|
126 |
+
################
|
127 |
+
# Model Loading
|
128 |
+
################
|
129 |
+
checkpoint_path = "microsoft/Phi-3-mini-4k-instruct"
|
130 |
+
# checkpoint_path = "microsoft/Phi-3-mini-128k-instruct"
|
131 |
+
model_kwargs = dict(
|
132 |
+
use_cache=False,
|
133 |
+
trust_remote_code=True,
|
134 |
+
attn_implementation="flash_attention_2", # loading the model with flash-attenstion support
|
135 |
+
torch_dtype=torch.bfloat16,
|
136 |
+
device_map=None
|
137 |
+
)
|
138 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs)
|
139 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)
|
140 |
+
tokenizer.model_max_length = 2048
|
141 |
+
tokenizer.pad_token = tokenizer.unk_token # use unk rather than eos token to prevent endless generation
|
142 |
+
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
|
143 |
+
tokenizer.padding_side = 'right'
|
144 |
+
|
145 |
+
|
146 |
+
##################
|
147 |
+
# Data Processing
|
148 |
+
##################
|
149 |
+
def apply_chat_template(
|
150 |
+
example,
|
151 |
+
tokenizer,
|
152 |
+
):
|
153 |
+
messages = example["messages"]
|
154 |
+
example["text"] = tokenizer.apply_chat_template(
|
155 |
+
messages, tokenize=False, add_generation_prompt=False)
|
156 |
+
return example
|
157 |
+
|
158 |
+
raw_dataset = load_dataset("HuggingFaceH4/ultrachat_200k")
|
159 |
+
train_dataset = raw_dataset["train_sft"]
|
160 |
+
test_dataset = raw_dataset["test_sft"]
|
161 |
+
column_names = list(train_dataset.features)
|
162 |
+
|
163 |
+
processed_train_dataset = train_dataset.map(
|
164 |
+
apply_chat_template,
|
165 |
+
fn_kwargs={"tokenizer": tokenizer},
|
166 |
+
num_proc=10,
|
167 |
+
remove_columns=column_names,
|
168 |
+
desc="Applying chat template to train_sft",
|
169 |
+
)
|
170 |
+
|
171 |
+
processed_test_dataset = test_dataset.map(
|
172 |
+
apply_chat_template,
|
173 |
+
fn_kwargs={"tokenizer": tokenizer},
|
174 |
+
num_proc=10,
|
175 |
+
remove_columns=column_names,
|
176 |
+
desc="Applying chat template to test_sft",
|
177 |
+
)
|
178 |
+
|
179 |
+
|
180 |
+
###########
|
181 |
+
# Training
|
182 |
+
###########
|
183 |
+
trainer = SFTTrainer(
|
184 |
+
model=model,
|
185 |
+
args=train_conf,
|
186 |
+
peft_config=peft_conf,
|
187 |
+
train_dataset=processed_train_dataset,
|
188 |
+
eval_dataset=processed_test_dataset,
|
189 |
+
max_seq_length=2048,
|
190 |
+
dataset_text_field="text",
|
191 |
+
tokenizer=tokenizer,
|
192 |
+
packing=True
|
193 |
+
)
|
194 |
+
train_result = trainer.train()
|
195 |
+
metrics = train_result.metrics
|
196 |
+
trainer.log_metrics("train", metrics)
|
197 |
+
trainer.save_metrics("train", metrics)
|
198 |
+
trainer.save_state()
|
199 |
+
|
200 |
+
|
201 |
+
#############
|
202 |
+
# Evaluation
|
203 |
+
#############
|
204 |
+
tokenizer.padding_side = 'left'
|
205 |
+
metrics = trainer.evaluate()
|
206 |
+
metrics["eval_samples"] = len(processed_test_dataset)
|
207 |
+
trainer.log_metrics("eval", metrics)
|
208 |
+
trainer.save_metrics("eval", metrics)
|
209 |
+
|
210 |
+
|
211 |
+
# ############
|
212 |
+
# # Save model
|
213 |
+
# ############
|
214 |
+
trainer.save_model(train_conf.output_dir)
|
special_tokens_map.json
CHANGED
@@ -1,7 +1,4 @@
|
|
1 |
{
|
2 |
-
"additional_special_tokens": [
|
3 |
-
"<|/inst|>"
|
4 |
-
],
|
5 |
"bos_token": {
|
6 |
"content": "<s>",
|
7 |
"lstrip": false,
|
@@ -17,7 +14,7 @@
|
|
17 |
"single_word": false
|
18 |
},
|
19 |
"pad_token": {
|
20 |
-
"content": "<|
|
21 |
"lstrip": false,
|
22 |
"normalized": false,
|
23 |
"rstrip": false,
|
|
|
1 |
{
|
|
|
|
|
|
|
2 |
"bos_token": {
|
3 |
"content": "<s>",
|
4 |
"lstrip": false,
|
|
|
14 |
"single_word": false
|
15 |
},
|
16 |
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
"lstrip": false,
|
19 |
"normalized": false,
|
20 |
"rstrip": false,
|
tokenizer.json
CHANGED
@@ -50,7 +50,7 @@
|
|
50 |
},
|
51 |
{
|
52 |
"id": 32002,
|
53 |
-
"content": "<|
|
54 |
"single_word": false,
|
55 |
"lstrip": false,
|
56 |
"rstrip": true,
|
@@ -59,7 +59,7 @@
|
|
59 |
},
|
60 |
{
|
61 |
"id": 32003,
|
62 |
-
"content": "<|
|
63 |
"single_word": false,
|
64 |
"lstrip": false,
|
65 |
"rstrip": true,
|
@@ -68,7 +68,7 @@
|
|
68 |
},
|
69 |
{
|
70 |
"id": 32004,
|
71 |
-
"content": "<|
|
72 |
"single_word": false,
|
73 |
"lstrip": false,
|
74 |
"rstrip": true,
|
@@ -77,7 +77,7 @@
|
|
77 |
},
|
78 |
{
|
79 |
"id": 32005,
|
80 |
-
"content": "<|
|
81 |
"single_word": false,
|
82 |
"lstrip": false,
|
83 |
"rstrip": true,
|
@@ -104,7 +104,7 @@
|
|
104 |
},
|
105 |
{
|
106 |
"id": 32008,
|
107 |
-
"content": "<|
|
108 |
"single_word": false,
|
109 |
"lstrip": false,
|
110 |
"rstrip": true,
|
@@ -113,7 +113,7 @@
|
|
113 |
},
|
114 |
{
|
115 |
"id": 32009,
|
116 |
-
"content": "<|
|
117 |
"single_word": false,
|
118 |
"lstrip": false,
|
119 |
"rstrip": true,
|
@@ -128,249 +128,6 @@
|
|
128 |
"rstrip": true,
|
129 |
"normalized": false,
|
130 |
"special": true
|
131 |
-
},
|
132 |
-
{
|
133 |
-
"id": 32011,
|
134 |
-
"content": "<|function_list|>",
|
135 |
-
"single_word": false,
|
136 |
-
"lstrip": false,
|
137 |
-
"rstrip": true,
|
138 |
-
"normalized": false,
|
139 |
-
"special": true
|
140 |
-
},
|
141 |
-
{
|
142 |
-
"id": 32012,
|
143 |
-
"content": "<|calc|>",
|
144 |
-
"single_word": false,
|
145 |
-
"lstrip": false,
|
146 |
-
"rstrip": true,
|
147 |
-
"normalized": false,
|
148 |
-
"special": true
|
149 |
-
},
|
150 |
-
{
|
151 |
-
"id": 32013,
|
152 |
-
"content": "<|code|>",
|
153 |
-
"single_word": false,
|
154 |
-
"lstrip": false,
|
155 |
-
"rstrip": true,
|
156 |
-
"normalized": false,
|
157 |
-
"special": true
|
158 |
-
},
|
159 |
-
{
|
160 |
-
"id": 32014,
|
161 |
-
"content": "<|/code|>",
|
162 |
-
"single_word": false,
|
163 |
-
"lstrip": false,
|
164 |
-
"rstrip": true,
|
165 |
-
"normalized": false,
|
166 |
-
"special": true
|
167 |
-
},
|
168 |
-
{
|
169 |
-
"id": 32015,
|
170 |
-
"content": "<|summary|>",
|
171 |
-
"single_word": false,
|
172 |
-
"lstrip": false,
|
173 |
-
"rstrip": true,
|
174 |
-
"normalized": false,
|
175 |
-
"special": true
|
176 |
-
},
|
177 |
-
{
|
178 |
-
"id": 32016,
|
179 |
-
"content": "<|resource|>",
|
180 |
-
"single_word": false,
|
181 |
-
"lstrip": false,
|
182 |
-
"rstrip": true,
|
183 |
-
"normalized": false,
|
184 |
-
"special": true
|
185 |
-
},
|
186 |
-
{
|
187 |
-
"id": 32017,
|
188 |
-
"content": "<|assistant_mask|>",
|
189 |
-
"single_word": false,
|
190 |
-
"lstrip": false,
|
191 |
-
"rstrip": true,
|
192 |
-
"normalized": false,
|
193 |
-
"special": true
|
194 |
-
},
|
195 |
-
{
|
196 |
-
"id": 32018,
|
197 |
-
"content": "<|start|>",
|
198 |
-
"single_word": false,
|
199 |
-
"lstrip": false,
|
200 |
-
"rstrip": true,
|
201 |
-
"normalized": false,
|
202 |
-
"special": true
|
203 |
-
},
|
204 |
-
{
|
205 |
-
"id": 32019,
|
206 |
-
"content": "<|message|>",
|
207 |
-
"single_word": false,
|
208 |
-
"lstrip": false,
|
209 |
-
"rstrip": true,
|
210 |
-
"normalized": false,
|
211 |
-
"special": true
|
212 |
-
},
|
213 |
-
{
|
214 |
-
"id": 32020,
|
215 |
-
"content": "<|fim_prefix|>",
|
216 |
-
"single_word": false,
|
217 |
-
"lstrip": false,
|
218 |
-
"rstrip": true,
|
219 |
-
"normalized": false,
|
220 |
-
"special": true
|
221 |
-
},
|
222 |
-
{
|
223 |
-
"id": 32021,
|
224 |
-
"content": "<|fim_middle|>",
|
225 |
-
"single_word": false,
|
226 |
-
"lstrip": false,
|
227 |
-
"rstrip": true,
|
228 |
-
"normalized": false,
|
229 |
-
"special": true
|
230 |
-
},
|
231 |
-
{
|
232 |
-
"id": 32022,
|
233 |
-
"content": "<|fim_suffix|>",
|
234 |
-
"single_word": false,
|
235 |
-
"lstrip": false,
|
236 |
-
"rstrip": true,
|
237 |
-
"normalized": false,
|
238 |
-
"special": true
|
239 |
-
},
|
240 |
-
{
|
241 |
-
"id": 32023,
|
242 |
-
"content": "<|meta_start|>",
|
243 |
-
"single_word": false,
|
244 |
-
"lstrip": false,
|
245 |
-
"rstrip": true,
|
246 |
-
"normalized": false,
|
247 |
-
"special": true
|
248 |
-
},
|
249 |
-
{
|
250 |
-
"id": 32024,
|
251 |
-
"content": "<|ipynb_marker|>",
|
252 |
-
"single_word": false,
|
253 |
-
"lstrip": false,
|
254 |
-
"rstrip": true,
|
255 |
-
"normalized": false,
|
256 |
-
"special": true
|
257 |
-
},
|
258 |
-
{
|
259 |
-
"id": 32025,
|
260 |
-
"content": "<|diff_marker|>",
|
261 |
-
"single_word": false,
|
262 |
-
"lstrip": false,
|
263 |
-
"rstrip": true,
|
264 |
-
"normalized": false,
|
265 |
-
"special": true
|
266 |
-
},
|
267 |
-
{
|
268 |
-
"id": 32026,
|
269 |
-
"content": "<|ghissue|>",
|
270 |
-
"single_word": false,
|
271 |
-
"lstrip": false,
|
272 |
-
"rstrip": true,
|
273 |
-
"normalized": false,
|
274 |
-
"special": true
|
275 |
-
},
|
276 |
-
{
|
277 |
-
"id": 32027,
|
278 |
-
"content": "<|ghreview|>",
|
279 |
-
"single_word": false,
|
280 |
-
"lstrip": false,
|
281 |
-
"rstrip": true,
|
282 |
-
"normalized": false,
|
283 |
-
"special": true
|
284 |
-
},
|
285 |
-
{
|
286 |
-
"id": 32028,
|
287 |
-
"content": "<|disc_start|>",
|
288 |
-
"single_word": false,
|
289 |
-
"lstrip": false,
|
290 |
-
"rstrip": true,
|
291 |
-
"normalized": false,
|
292 |
-
"special": true
|
293 |
-
},
|
294 |
-
{
|
295 |
-
"id": 32029,
|
296 |
-
"content": "<|disc_sep|>",
|
297 |
-
"single_word": false,
|
298 |
-
"lstrip": false,
|
299 |
-
"rstrip": true,
|
300 |
-
"normalized": false,
|
301 |
-
"special": true
|
302 |
-
},
|
303 |
-
{
|
304 |
-
"id": 32030,
|
305 |
-
"content": "<|disc_thread|><|query|>",
|
306 |
-
"single_word": false,
|
307 |
-
"lstrip": false,
|
308 |
-
"rstrip": true,
|
309 |
-
"normalized": false,
|
310 |
-
"special": true
|
311 |
-
},
|
312 |
-
{
|
313 |
-
"id": 32031,
|
314 |
-
"content": "<|/query|>",
|
315 |
-
"single_word": false,
|
316 |
-
"lstrip": false,
|
317 |
-
"rstrip": true,
|
318 |
-
"normalized": false,
|
319 |
-
"special": true
|
320 |
-
},
|
321 |
-
{
|
322 |
-
"id": 32032,
|
323 |
-
"content": "<|data|>",
|
324 |
-
"single_word": false,
|
325 |
-
"lstrip": false,
|
326 |
-
"rstrip": true,
|
327 |
-
"normalized": false,
|
328 |
-
"special": true
|
329 |
-
},
|
330 |
-
{
|
331 |
-
"id": 32033,
|
332 |
-
"content": "<|/data|>",
|
333 |
-
"single_word": false,
|
334 |
-
"lstrip": false,
|
335 |
-
"rstrip": true,
|
336 |
-
"normalized": false,
|
337 |
-
"special": true
|
338 |
-
},
|
339 |
-
{
|
340 |
-
"id": 32034,
|
341 |
-
"content": "<|sys|>",
|
342 |
-
"single_word": false,
|
343 |
-
"lstrip": false,
|
344 |
-
"rstrip": true,
|
345 |
-
"normalized": false,
|
346 |
-
"special": true
|
347 |
-
},
|
348 |
-
{
|
349 |
-
"id": 32035,
|
350 |
-
"content": "<|/sys|>",
|
351 |
-
"single_word": false,
|
352 |
-
"lstrip": false,
|
353 |
-
"rstrip": true,
|
354 |
-
"normalized": false,
|
355 |
-
"special": true
|
356 |
-
},
|
357 |
-
{
|
358 |
-
"id": 32036,
|
359 |
-
"content": "<|inst|>",
|
360 |
-
"single_word": false,
|
361 |
-
"lstrip": false,
|
362 |
-
"rstrip": true,
|
363 |
-
"normalized": false,
|
364 |
-
"special": true
|
365 |
-
},
|
366 |
-
{
|
367 |
-
"id": 32037,
|
368 |
-
"content": "<|/inst|>",
|
369 |
-
"single_word": false,
|
370 |
-
"lstrip": false,
|
371 |
-
"rstrip": true,
|
372 |
-
"normalized": false,
|
373 |
-
"special": true
|
374 |
}
|
375 |
],
|
376 |
"normalizer": {
|
@@ -393,12 +150,6 @@
|
|
393 |
"post_processor": {
|
394 |
"type": "TemplateProcessing",
|
395 |
"single": [
|
396 |
-
{
|
397 |
-
"SpecialToken": {
|
398 |
-
"id": "<s>",
|
399 |
-
"type_id": 0
|
400 |
-
}
|
401 |
-
},
|
402 |
{
|
403 |
"Sequence": {
|
404 |
"id": "A",
|
@@ -407,24 +158,12 @@
|
|
407 |
}
|
408 |
],
|
409 |
"pair": [
|
410 |
-
{
|
411 |
-
"SpecialToken": {
|
412 |
-
"id": "<s>",
|
413 |
-
"type_id": 0
|
414 |
-
}
|
415 |
-
},
|
416 |
{
|
417 |
"Sequence": {
|
418 |
"id": "A",
|
419 |
"type_id": 0
|
420 |
}
|
421 |
},
|
422 |
-
{
|
423 |
-
"SpecialToken": {
|
424 |
-
"id": "<s>",
|
425 |
-
"type_id": 1
|
426 |
-
}
|
427 |
-
},
|
428 |
{
|
429 |
"Sequence": {
|
430 |
"id": "B",
|
@@ -432,17 +171,7 @@
|
|
432 |
}
|
433 |
}
|
434 |
],
|
435 |
-
"special_tokens": {
|
436 |
-
"<s>": {
|
437 |
-
"id": "<s>",
|
438 |
-
"ids": [
|
439 |
-
1
|
440 |
-
],
|
441 |
-
"tokens": [
|
442 |
-
"<s>"
|
443 |
-
]
|
444 |
-
}
|
445 |
-
}
|
446 |
},
|
447 |
"decoder": {
|
448 |
"type": "Sequence",
|
|
|
50 |
},
|
51 |
{
|
52 |
"id": 32002,
|
53 |
+
"content": "<|placeholder1|>",
|
54 |
"single_word": false,
|
55 |
"lstrip": false,
|
56 |
"rstrip": true,
|
|
|
59 |
},
|
60 |
{
|
61 |
"id": 32003,
|
62 |
+
"content": "<|placeholder2|>",
|
63 |
"single_word": false,
|
64 |
"lstrip": false,
|
65 |
"rstrip": true,
|
|
|
68 |
},
|
69 |
{
|
70 |
"id": 32004,
|
71 |
+
"content": "<|placeholder3|>",
|
72 |
"single_word": false,
|
73 |
"lstrip": false,
|
74 |
"rstrip": true,
|
|
|
77 |
},
|
78 |
{
|
79 |
"id": 32005,
|
80 |
+
"content": "<|placeholder4|>",
|
81 |
"single_word": false,
|
82 |
"lstrip": false,
|
83 |
"rstrip": true,
|
|
|
104 |
},
|
105 |
{
|
106 |
"id": 32008,
|
107 |
+
"content": "<|placeholder5|>",
|
108 |
"single_word": false,
|
109 |
"lstrip": false,
|
110 |
"rstrip": true,
|
|
|
113 |
},
|
114 |
{
|
115 |
"id": 32009,
|
116 |
+
"content": "<|placeholder6|>",
|
117 |
"single_word": false,
|
118 |
"lstrip": false,
|
119 |
"rstrip": true,
|
|
|
128 |
"rstrip": true,
|
129 |
"normalized": false,
|
130 |
"special": true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
}
|
132 |
],
|
133 |
"normalizer": {
|
|
|
150 |
"post_processor": {
|
151 |
"type": "TemplateProcessing",
|
152 |
"single": [
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
{
|
154 |
"Sequence": {
|
155 |
"id": "A",
|
|
|
158 |
}
|
159 |
],
|
160 |
"pair": [
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
{
|
162 |
"Sequence": {
|
163 |
"id": "A",
|
164 |
"type_id": 0
|
165 |
}
|
166 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
{
|
168 |
"Sequence": {
|
169 |
"id": "B",
|
|
|
171 |
}
|
172 |
}
|
173 |
],
|
174 |
+
"special_tokens": {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
},
|
176 |
"decoder": {
|
177 |
"type": "Sequence",
|
tokenizer_config.json
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
{
|
2 |
-
"add_bos_token":
|
3 |
"add_eos_token": false,
|
|
|
4 |
"added_tokens_decoder": {
|
5 |
"0": {
|
6 |
"content": "<unk>",
|
@@ -43,7 +44,7 @@
|
|
43 |
"special": true
|
44 |
},
|
45 |
"32002": {
|
46 |
-
"content": "<|
|
47 |
"lstrip": false,
|
48 |
"normalized": false,
|
49 |
"rstrip": true,
|
@@ -51,7 +52,7 @@
|
|
51 |
"special": true
|
52 |
},
|
53 |
"32003": {
|
54 |
-
"content": "<|
|
55 |
"lstrip": false,
|
56 |
"normalized": false,
|
57 |
"rstrip": true,
|
@@ -59,7 +60,7 @@
|
|
59 |
"special": true
|
60 |
},
|
61 |
"32004": {
|
62 |
-
"content": "<|
|
63 |
"lstrip": false,
|
64 |
"normalized": false,
|
65 |
"rstrip": true,
|
@@ -67,7 +68,7 @@
|
|
67 |
"special": true
|
68 |
},
|
69 |
"32005": {
|
70 |
-
"content": "<|
|
71 |
"lstrip": false,
|
72 |
"normalized": false,
|
73 |
"rstrip": true,
|
@@ -91,7 +92,7 @@
|
|
91 |
"special": true
|
92 |
},
|
93 |
"32008": {
|
94 |
-
"content": "<|
|
95 |
"lstrip": false,
|
96 |
"normalized": false,
|
97 |
"rstrip": true,
|
@@ -99,7 +100,7 @@
|
|
99 |
"special": true
|
100 |
},
|
101 |
"32009": {
|
102 |
-
"content": "<|
|
103 |
"lstrip": false,
|
104 |
"normalized": false,
|
105 |
"rstrip": true,
|
@@ -113,234 +114,15 @@
|
|
113 |
"rstrip": true,
|
114 |
"single_word": false,
|
115 |
"special": true
|
116 |
-
},
|
117 |
-
"32011": {
|
118 |
-
"content": "<|function_list|>",
|
119 |
-
"lstrip": false,
|
120 |
-
"normalized": false,
|
121 |
-
"rstrip": true,
|
122 |
-
"single_word": false,
|
123 |
-
"special": true
|
124 |
-
},
|
125 |
-
"32012": {
|
126 |
-
"content": "<|calc|>",
|
127 |
-
"lstrip": false,
|
128 |
-
"normalized": false,
|
129 |
-
"rstrip": true,
|
130 |
-
"single_word": false,
|
131 |
-
"special": true
|
132 |
-
},
|
133 |
-
"32013": {
|
134 |
-
"content": "<|code|>",
|
135 |
-
"lstrip": false,
|
136 |
-
"normalized": false,
|
137 |
-
"rstrip": true,
|
138 |
-
"single_word": false,
|
139 |
-
"special": true
|
140 |
-
},
|
141 |
-
"32014": {
|
142 |
-
"content": "<|/code|>",
|
143 |
-
"lstrip": false,
|
144 |
-
"normalized": false,
|
145 |
-
"rstrip": true,
|
146 |
-
"single_word": false,
|
147 |
-
"special": true
|
148 |
-
},
|
149 |
-
"32015": {
|
150 |
-
"content": "<|summary|>",
|
151 |
-
"lstrip": false,
|
152 |
-
"normalized": false,
|
153 |
-
"rstrip": true,
|
154 |
-
"single_word": false,
|
155 |
-
"special": true
|
156 |
-
},
|
157 |
-
"32016": {
|
158 |
-
"content": "<|resource|>",
|
159 |
-
"lstrip": false,
|
160 |
-
"normalized": false,
|
161 |
-
"rstrip": true,
|
162 |
-
"single_word": false,
|
163 |
-
"special": true
|
164 |
-
},
|
165 |
-
"32017": {
|
166 |
-
"content": "<|assistant_mask|>",
|
167 |
-
"lstrip": false,
|
168 |
-
"normalized": false,
|
169 |
-
"rstrip": true,
|
170 |
-
"single_word": false,
|
171 |
-
"special": true
|
172 |
-
},
|
173 |
-
"32018": {
|
174 |
-
"content": "<|start|>",
|
175 |
-
"lstrip": false,
|
176 |
-
"normalized": false,
|
177 |
-
"rstrip": true,
|
178 |
-
"single_word": false,
|
179 |
-
"special": true
|
180 |
-
},
|
181 |
-
"32019": {
|
182 |
-
"content": "<|message|>",
|
183 |
-
"lstrip": false,
|
184 |
-
"normalized": false,
|
185 |
-
"rstrip": true,
|
186 |
-
"single_word": false,
|
187 |
-
"special": true
|
188 |
-
},
|
189 |
-
"32020": {
|
190 |
-
"content": "<|fim_prefix|>",
|
191 |
-
"lstrip": false,
|
192 |
-
"normalized": false,
|
193 |
-
"rstrip": true,
|
194 |
-
"single_word": false,
|
195 |
-
"special": true
|
196 |
-
},
|
197 |
-
"32021": {
|
198 |
-
"content": "<|fim_middle|>",
|
199 |
-
"lstrip": false,
|
200 |
-
"normalized": false,
|
201 |
-
"rstrip": true,
|
202 |
-
"single_word": false,
|
203 |
-
"special": true
|
204 |
-
},
|
205 |
-
"32022": {
|
206 |
-
"content": "<|fim_suffix|>",
|
207 |
-
"lstrip": false,
|
208 |
-
"normalized": false,
|
209 |
-
"rstrip": true,
|
210 |
-
"single_word": false,
|
211 |
-
"special": true
|
212 |
-
},
|
213 |
-
"32023": {
|
214 |
-
"content": "<|meta_start|>",
|
215 |
-
"lstrip": false,
|
216 |
-
"normalized": false,
|
217 |
-
"rstrip": true,
|
218 |
-
"single_word": false,
|
219 |
-
"special": true
|
220 |
-
},
|
221 |
-
"32024": {
|
222 |
-
"content": "<|ipynb_marker|>",
|
223 |
-
"lstrip": false,
|
224 |
-
"normalized": false,
|
225 |
-
"rstrip": true,
|
226 |
-
"single_word": false,
|
227 |
-
"special": true
|
228 |
-
},
|
229 |
-
"32025": {
|
230 |
-
"content": "<|diff_marker|>",
|
231 |
-
"lstrip": false,
|
232 |
-
"normalized": false,
|
233 |
-
"rstrip": true,
|
234 |
-
"single_word": false,
|
235 |
-
"special": true
|
236 |
-
},
|
237 |
-
"32026": {
|
238 |
-
"content": "<|ghissue|>",
|
239 |
-
"lstrip": false,
|
240 |
-
"normalized": false,
|
241 |
-
"rstrip": true,
|
242 |
-
"single_word": false,
|
243 |
-
"special": true
|
244 |
-
},
|
245 |
-
"32027": {
|
246 |
-
"content": "<|ghreview|>",
|
247 |
-
"lstrip": false,
|
248 |
-
"normalized": false,
|
249 |
-
"rstrip": true,
|
250 |
-
"single_word": false,
|
251 |
-
"special": true
|
252 |
-
},
|
253 |
-
"32028": {
|
254 |
-
"content": "<|disc_start|>",
|
255 |
-
"lstrip": false,
|
256 |
-
"normalized": false,
|
257 |
-
"rstrip": true,
|
258 |
-
"single_word": false,
|
259 |
-
"special": true
|
260 |
-
},
|
261 |
-
"32029": {
|
262 |
-
"content": "<|disc_sep|>",
|
263 |
-
"lstrip": false,
|
264 |
-
"normalized": false,
|
265 |
-
"rstrip": true,
|
266 |
-
"single_word": false,
|
267 |
-
"special": true
|
268 |
-
},
|
269 |
-
"32030": {
|
270 |
-
"content": "<|disc_thread|><|query|>",
|
271 |
-
"lstrip": false,
|
272 |
-
"normalized": false,
|
273 |
-
"rstrip": true,
|
274 |
-
"single_word": false,
|
275 |
-
"special": true
|
276 |
-
},
|
277 |
-
"32031": {
|
278 |
-
"content": "<|/query|>",
|
279 |
-
"lstrip": false,
|
280 |
-
"normalized": false,
|
281 |
-
"rstrip": true,
|
282 |
-
"single_word": false,
|
283 |
-
"special": true
|
284 |
-
},
|
285 |
-
"32032": {
|
286 |
-
"content": "<|data|>",
|
287 |
-
"lstrip": false,
|
288 |
-
"normalized": false,
|
289 |
-
"rstrip": true,
|
290 |
-
"single_word": false,
|
291 |
-
"special": true
|
292 |
-
},
|
293 |
-
"32033": {
|
294 |
-
"content": "<|/data|>",
|
295 |
-
"lstrip": false,
|
296 |
-
"normalized": false,
|
297 |
-
"rstrip": true,
|
298 |
-
"single_word": false,
|
299 |
-
"special": true
|
300 |
-
},
|
301 |
-
"32034": {
|
302 |
-
"content": "<|sys|>",
|
303 |
-
"lstrip": false,
|
304 |
-
"normalized": false,
|
305 |
-
"rstrip": true,
|
306 |
-
"single_word": false,
|
307 |
-
"special": true
|
308 |
-
},
|
309 |
-
"32035": {
|
310 |
-
"content": "<|/sys|>",
|
311 |
-
"lstrip": false,
|
312 |
-
"normalized": false,
|
313 |
-
"rstrip": true,
|
314 |
-
"single_word": false,
|
315 |
-
"special": true
|
316 |
-
},
|
317 |
-
"32036": {
|
318 |
-
"content": "<|inst|>",
|
319 |
-
"lstrip": false,
|
320 |
-
"normalized": false,
|
321 |
-
"rstrip": true,
|
322 |
-
"single_word": false,
|
323 |
-
"special": true
|
324 |
-
},
|
325 |
-
"32037": {
|
326 |
-
"content": "<|/inst|>",
|
327 |
-
"lstrip": false,
|
328 |
-
"normalized": false,
|
329 |
-
"rstrip": true,
|
330 |
-
"single_word": false,
|
331 |
-
"special": true
|
332 |
}
|
333 |
},
|
334 |
-
"additional_special_tokens": [
|
335 |
-
"<|/inst|>"
|
336 |
-
],
|
337 |
"bos_token": "<s>",
|
338 |
-
"chat_template": "{
|
339 |
"clean_up_tokenization_spaces": false,
|
340 |
"eos_token": "<|endoftext|>",
|
341 |
"legacy": false,
|
342 |
"model_max_length": 4096,
|
343 |
-
"pad_token": "<|
|
344 |
"padding_side": "left",
|
345 |
"sp_model_kwargs": {},
|
346 |
"tokenizer_class": "LlamaTokenizer",
|
|
|
1 |
{
|
2 |
+
"add_bos_token": false,
|
3 |
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
"added_tokens_decoder": {
|
6 |
"0": {
|
7 |
"content": "<unk>",
|
|
|
44 |
"special": true
|
45 |
},
|
46 |
"32002": {
|
47 |
+
"content": "<|placeholder1|>",
|
48 |
"lstrip": false,
|
49 |
"normalized": false,
|
50 |
"rstrip": true,
|
|
|
52 |
"special": true
|
53 |
},
|
54 |
"32003": {
|
55 |
+
"content": "<|placeholder2|>",
|
56 |
"lstrip": false,
|
57 |
"normalized": false,
|
58 |
"rstrip": true,
|
|
|
60 |
"special": true
|
61 |
},
|
62 |
"32004": {
|
63 |
+
"content": "<|placeholder3|>",
|
64 |
"lstrip": false,
|
65 |
"normalized": false,
|
66 |
"rstrip": true,
|
|
|
68 |
"special": true
|
69 |
},
|
70 |
"32005": {
|
71 |
+
"content": "<|placeholder4|>",
|
72 |
"lstrip": false,
|
73 |
"normalized": false,
|
74 |
"rstrip": true,
|
|
|
92 |
"special": true
|
93 |
},
|
94 |
"32008": {
|
95 |
+
"content": "<|placeholder5|>",
|
96 |
"lstrip": false,
|
97 |
"normalized": false,
|
98 |
"rstrip": true,
|
|
|
100 |
"special": true
|
101 |
},
|
102 |
"32009": {
|
103 |
+
"content": "<|placeholder6|>",
|
104 |
"lstrip": false,
|
105 |
"normalized": false,
|
106 |
"rstrip": true,
|
|
|
114 |
"rstrip": true,
|
115 |
"single_word": false,
|
116 |
"special": true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
}
|
118 |
},
|
|
|
|
|
|
|
119 |
"bos_token": "<s>",
|
120 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'system' %}{{'<|system|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'user' %}{{'<|user|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'assistant' %}{{'<|assistant|>\n' + message['content'] + '<|end|>\n'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
|
121 |
"clean_up_tokenization_spaces": false,
|
122 |
"eos_token": "<|endoftext|>",
|
123 |
"legacy": false,
|
124 |
"model_max_length": 4096,
|
125 |
+
"pad_token": "<|endoftext|>",
|
126 |
"padding_side": "left",
|
127 |
"sp_model_kwargs": {},
|
128 |
"tokenizer_class": "LlamaTokenizer",
|