File size: 22,045 Bytes
ae224cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Processor class for Phi3-V.
"""
import re
from typing import List, Optional, Union

import torch

import transformers
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
from transformers.utils import TensorType


"""Image processor class for Phi3-V."""

from typing import List, Optional, Union

import numpy as np

from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.image_transforms import (
    convert_to_rgb,
)
from transformers.image_utils import (
    OPENAI_CLIP_MEAN,
    OPENAI_CLIP_STD,
    ImageInput,
    make_list_of_images,
    valid_images,
)
from transformers.utils import TensorType, is_vision_available, logging

from transformers import AutoImageProcessor

logger = logging.get_logger(__name__)


if is_vision_available():
    from PIL import Image

import torch
import torchvision

def padding_336(b):
    width, height = b.size
    tar = int(np.ceil(height / 336) * 336)
    top_padding = int((tar - height)/2)
    bottom_padding = tar - height - top_padding
    left_padding = 0
    right_padding = 0
    b = torchvision.transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255])

    return b

def calc_padded_size(width, height, padding_unit=336):  
    target_height = int(np.ceil(height / padding_unit) * padding_unit)  
    top_padding = int((target_height - height) / 2)  
    bottom_padding = target_height - height - top_padding  
    left_padding = 0  
    right_padding = 0  
    padded_width = width + left_padding + right_padding  
    padded_height = height + top_padding + bottom_padding  
    return padded_width, padded_height  

def HD_transform(img, hd_num=16):
    width, height = img.size
    trans = False
    if width < height:
        img = img.transpose(Image.TRANSPOSE)
        trans = True
        width, height = img.size
    ratio = (width/ height)
    scale = 1
    while scale*np.ceil(scale/ratio) <= hd_num:
        scale += 1
    scale -= 1
    new_w = int(scale * 336)
    new_h = int(new_w / ratio)

    img = torchvision.transforms.functional.resize(img, [new_h, new_w],)
    img = padding_336(img)
    width, height = img.size
    if trans:
        img = img.transpose(Image.TRANSPOSE)

    return img

def calc_hd_transform_size(width, height, hd_num=16):  
    transposed = False  
    if width < height:  
        width, height = height, width  
        transposed = True  
  
    ratio = width / height  
    scale = 1  
    while scale * np.ceil(scale / ratio) <= hd_num:  
        scale += 1  
    scale -= 1  
  
    new_width = int(scale * 336)  
    new_height = int(new_width / ratio)  
  
    padded_width, padded_height = calc_padded_size(new_width, new_height)  
      
    if transposed:  
        padded_width, padded_height = padded_height, padded_width  
  
    return padded_width, padded_height  

def pad_to_max_num_crops_tensor(images, max_crops=5):
    """
    images: B x 3 x H x W, B<=max_crops
    """
    B, _, H, W = images.shape
    if B < max_crops:
        pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
        images = torch.cat([images, pad], dim=0)
    return images


class Phi3VImageProcessor(BaseImageProcessor):
    r"""
    Constructs a Phi3 image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques
    for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/pdf/2404.06512)

    Args:
        image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
            Can be overridden by the `image_std` parameter in the `preprocess` method.
        do_convert_rgb (`bool`, *optional*, defaults to `True`):
            Whether to convert the image to RGB.
    """

    model_input_names = ["pixel_values"]

    def __init__(
        self,
        num_crops: int = 1,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        do_convert_rgb: bool = True,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self.num_crops = num_crops
        self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
        self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
        self.do_convert_rgb = do_convert_rgb
    
    def calc_num_image_tokens(
            self, 
            images: ImageInput 
    ):
        """ Calculate the number of image tokens for each image.
        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
        """
        images = make_list_of_images(images)

        if not valid_images(images):
            raise ValueError(
                "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
                "torch.Tensor, tf.Tensor or jax.ndarray."
            )

        images = [image.convert('RGB') for image in images]
        # (H, W, C)
        elems = [HD_transform(im, hd_num = self.num_crops) for im in images] 
        shapes = [[im.size[1], im.size[0]] for im in elems]
        num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
        return num_img_tokens

    def calc_num_image_tokens_from_image_size(self, width, height):
        """
        Calculate the number of image tokens for a given image size.
        Args:
            width (`int`): Width of the image.
            height (`int`): Height of the image.
        """
        new_width, new_height = calc_hd_transform_size(width, height, hd_num=self.num_crops)  
        num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12)  
        return num_img_tokens

    def preprocess(
        self,
        images: ImageInput,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        do_convert_rgb: bool = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
    ):
        """
        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
                `True`.
            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
                Whether to convert the image to RGB.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                - Unset: Return a list of `np.ndarray`.
                - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
        """
        image_mean = image_mean if image_mean is not None else self.image_mean
        image_std = image_std if image_std is not None else self.image_std
        do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb

        images = make_list_of_images(images)

        if not valid_images(images):
            raise ValueError(
                "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
                "torch.Tensor, tf.Tensor or jax.ndarray."
            )

        if do_convert_rgb:
            images = [convert_to_rgb(image) for image in images]

        image_sizes = []
        img_processor = torchvision.transforms.Compose([
            torchvision.transforms.ToTensor(),
            torchvision.transforms.Normalize(image_mean, image_std)
        ])

        # PIL images
        # HD_transform pad images to size of multiiply of 336, 336
        # convert to RGB first
        images = [image.convert('RGB') for image in images]
        elems = [HD_transform(im, hd_num = self.num_crops) for im in images] 
        # tensor transform and normalize
        hd_images = [img_processor(im) for im in elems]
        # create global image 
        global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(336, 336), mode='bicubic',).to(im.dtype) for im in hd_images]

        # [(3, h, w)], where h, w is multiple of 336
        shapes = [[im.size(1), im.size(2)] for im in hd_images]
        num_img_tokens = [int(((h//336)*(w//336)+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
        # reshape to channel dimension -> (num_images, num_crops, 3, 336, 336)
        # (1, 3, h//336, 336, w//336, 336) -> (1, h//336, w//336, 3, 336, 336) -> (h//336*w//336, 3, 336, 336)
        hd_images_reshape = [im.reshape(1, 3, h//336, 336, w//336, 336).permute(0,2,4,1,3,5).reshape(-1, 3, 336, 336).contiguous() for im, (h, w) in zip(hd_images, shapes)]
        # concat global image and local image
        hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)]

        # pad to max_num_crops
        image_transformed = [pad_to_max_num_crops_tensor(im, self.num_crops+1) for im in hd_images_reshape]
        image_transformed = torch.stack(image_transformed, dim=0)
        image_sizes = [torch.LongTensor(_shapes) for _shapes in shapes]
        padded_images = image_transformed
        image_sizes = shapes

        data = {"pixel_values": padded_images, 
                "image_sizes": image_sizes,
                "num_img_tokens": num_img_tokens
                }

        return BatchFeature(data=data, tensor_type=return_tensors)

AutoImageProcessor.register("Phi3VImageProcessor", Phi3VImageProcessor)

transformers.Phi3VImageProcessor = Phi3VImageProcessor 

class Phi3VProcessor(ProcessorMixin):
    r"""
    Constructs a Phi3-V processor which wraps a Phi3-V image processor and a LLaMa tokenizer into a single processor.

    [`Phi3VProcessor`] offers all the functionalities of [`Phi3VImageProcessor`] and [`LlamaTokenizerFast`]. See the
    [`~Phi3VProcessor.__call__`] and [`~Phi3VProcessor.decode`] for more information.

    Args:
        image_processor ([`Phi3VImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`LlamaTokenizerFast`], *optional*):
            The tokenizer is a required input.
    """

    attributes = ["image_processor", "tokenizer"]
    image_processor_class = "Phi3VImageProcessor"
    tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
    special_image_token = "<|image|>"

    def __init__(self, image_processor, tokenizer):
        self.image_processor = image_processor
        self.tokenizer = tokenizer
        self.num_img_tokens = image_processor.num_img_tokens
        self.img_tokens = [f"<|image_{i+1}|>" for i in range(1000000)]

    def __call__(
        self,
        text: Union[TextInput, List[TextInput]],
        images: ImageInput = None,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length=None,
        return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        Phi3ImageProcessor's [`~Phi3ImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
        of the above two methods for more information.

        Args:
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
                Select a strategy to pad the returned sequences (according to the model's padding side and padding
                index) among:
                - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                  sequence if provided).
                - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                  acceptable input length for the model if that argument is not provided.
                - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
                  lengths).
            max_length (`int`, *optional*):
                Maximum length of the returned list and optionally padding length (see above).
            truncation (`bool`, *optional*):
                Activates truncation to cut input sequences longer than `max_length` to `max_length`.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        """
        if images is not None:
            image_inputs = self.image_processor(images, return_tensors=return_tensors)
        else:
            image_inputs = {}
        inputs = self._convert_images_texts_to_inputs(image_inputs, text, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors)
        return inputs

    def calc_num_image_tokens(self, images: ImageInput):
        """ Calculate the number of image tokens for each image.
        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
        """
        return self.image_processor.calc_num_image_tokens(images)
        
    def calc_num_image_tokens_from_image_size(self, width, height):
        """ Calculate the number of image token for an image with given width and height.
        Args:
            width (`int`):
                Width of the image.
            height (`int`):
                Height of the image.
        """
        return self.image_processor.calc_num_image_tokens_from_image_size(width, height)
    
    
    @property 
    def special_image_token_id(self):
        return self.tokenizer.convert_tokens_to_ids(self.special_image_token)

    def get_special_image_token_id(self):
        return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
    
    def _convert_images_texts_to_inputs(self, images, texts, padding=False, truncation=None, max_length=None, return_tensors=None):

        if not len(images):
            model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length)
            return BatchFeature(data={**model_inputs})

        pattern = r"<\|image_\d+\|>"
        prompt_chunks = [self.tokenizer(chunk).input_ids for chunk in re.split(pattern, texts)] 

        if 'num_img_tokens' in images:
            num_img_tokens = images['num_img_tokens']
        else:
            assert 'num_crops' in images, 'num_crops must be provided in images if num_img_tokens is not provided'
            num_crops = images['num_crops']
            num_img_tokens = [_num_crops * self.num_img_tokens for _num_crops in num_crops] 

        images, image_sizes = images['pixel_values'], images['image_sizes']

        # image_tags needs to start from 1 to n
        image_tags = re.findall(pattern, texts) 
        # image_ids = [int(s.split("|")[1].split("_")[-1]) * -1 for s in image_tags]
        # image_ids_pad = [[iid]*num_img_tokens[i] for i, iid in enumerate(image_ids)]
        image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags]
        unique_image_ids = sorted(list(set(image_ids)))
        # image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be [1, 4, 5]
        # check the condition
        assert unique_image_ids == list(range(1, len(unique_image_ids)+1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}"
        # total images must be the same as the number of image tags
        assert len(unique_image_ids) == len(images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(images)} images"

        image_ids_pad = [[-iid]*num_img_tokens[iid-1] for iid in image_ids]

        def insert_separator(X, sep_list):
            if len(X) > len(sep_list):
                sep_list.append([])
            return [ele for sublist in zip(X, sep_list) for ele in sublist]
        input_ids = []
        offset = 0                
        for x in insert_separator(prompt_chunks, image_ids_pad):
            input_ids.extend(x[offset:])

        input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0)
        attention_mask = (input_ids > -1000000).to(torch.long)

        return BatchFeature(data={"input_ids": input_ids,
                                  "attention_mask": attention_mask,
                                  "pixel_values": images, 
                                  "image_sizes": image_sizes})


    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    @property
    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))