MLX
Safetensors
llama
8-bit precision
morgul's picture
fb35bf82d033454cd39d49f43e0ea06d2e567f8311d64600385bc0c25a280d5b
cc0c285 verified
|
raw
history blame
935 Bytes
---
base_model: jondurbin/airoboros-33b-gpt4-1.4
datasets:
- jondurbin/airoboros-gpt4-1.4
license: cc-by-nc-4.0
tags:
- mlx
---
# mlx-community/airoboros-33b-gpt4-1.4
The Model [mlx-community/airoboros-33b-gpt4-1.4](https://huggingface.co/mlx-community/airoboros-33b-gpt4-1.4) was converted to MLX format from [jondurbin/airoboros-33b-gpt4-1.4](https://huggingface.co/jondurbin/airoboros-33b-gpt4-1.4) using mlx-lm version **0.19.0**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/airoboros-33b-gpt4-1.4")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```