File size: 1,937 Bytes
22f2347 2d302a8 0ae62fc 2d302a8 0ae62fc 2d302a8 0ae62fc 2d302a8 0ae62fc 2d302a8 0ae62fc 2d302a8 0ae62fc 2d302a8 0ae62fc 2d302a8 0ae62fc 2d302a8 0ae62fc 2d302a8 0ae62fc 2d302a8 0ae62fc 2d302a8 0ae62fc 2d302a8 0ae62fc 2d302a8 0ae62fc 2d302a8 0ae62fc 2d302a8 0ae62fc 2d302a8 0ae62fc 2d302a8 0ae62fc 2d302a8 c0c08a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
tags:
- mlx
- mlx-image
- vision
- image-classification
datasets:
- imagenet-1k
library_name: mlx-image
---
# vit_base_patch8_224.dino
A [Vision Transformer](https://arxiv.org/abs/2010.11929v2) image classification model trained on ImageNet-1k dataset with [DINO](https://arxiv.org/abs/2104.14294).
The model was trained in self-supervised fashion on ImageNet-1k dataset. No classification head was trained, only the backbone.
Disclaimer: This is a porting of the torch model weights to Apple MLX Framework.
<div align="center">
<img width="100%" alt="DINO illustration" src="dino.gif">
</div>
## How to use
```bash
pip install mlx-image
```
Here is how to use this model for image classification:
```python
from mlxim.model import create_model
from mlxim.io import read_rgb
from mlxim.transform import ImageNetTransform
transform = ImageNetTransform(train=False, img_size=224)
x = transform(read_rgb("cat.png"))
x = mx.expand_dims(x, 0)
model = create_model("vit_base_patch8_224.dino")
model.eval()
logits, attn_masks = model(x, attn_masks=True)
```
You can also use the embeds from layer before head:
```python
from mlxim.model import create_model
from mlxim.io import read_rgb
from mlxim.transform import ImageNetTransform
transform = ImageNetTransform(train=False, img_size=512)
x = transform(read_rgb("cat.png"))
x = mx.expand_dims(x, 0)
# first option
model = create_model("vit_base_patch8_224.dino", num_classes=0)
model.eval()
embeds = model(x)
# second option
model = create_model("vit_base_patch8_224.dino")
model.eval()
embeds, attn_masks = model.get_features(x)
```
## Attention maps
You can visualize the attention maps using the `attn_masks` returned by the model. Go check the mlx-image [notebook](https://github.com/riccardomusmeci/mlx-image/blob/main/notebooks/dino_attention.ipynb).
<div align="center">
<img width="100%" alt="Attention Map" src="attention_maps.png">
</div>
|