--- license: apache-2.0 library_name: mlx-image tags: - mlx - mlx-image - vision - image-classification datasets: - imagenet-1k --- # vit_base_patch8_224.dino A [Vision Transformer](https://arxiv.org/abs/2010.11929v2) image classification model trained on ImageNet-1k dataset with [DINO](https://arxiv.org/abs/2104.14294). The model was trained in self-supervised fashion on ImageNet-1k dataset. No classification head was trained, only the backbone. Disclaimer: This is a porting of the torch model weights to Apple MLX Framework.
DINO illustration
## How to use ```bash pip install mlx-image ``` Here is how to use this model for image classification: ```python from mlxim.model import create_model from mlxim.io import read_rgb from mlxim.transform import ImageNetTransform transform = ImageNetTransform(train=False, img_size=224) x = transform(read_rgb("cat.png")) x = mx.expand_dims(x, 0) model = create_model("vit_base_patch8_224.dino") model.eval() logits, attn_masks = model(x, attn_masks=True) ``` You can also use the embeds from layer before head: ```python from mlxim.model import create_model from mlxim.io import read_rgb from mlxim.transform import ImageNetTransform transform = ImageNetTransform(train=False, img_size=512) x = transform(read_rgb("cat.png")) x = mx.expand_dims(x, 0) # first option model = create_model("vit_base_patch8_224.dino", num_classes=0) model.eval() embeds = model(x) # second option model = create_model("vit_base_patch8_224.dino") model.eval() embeds, attn_masks = model.get_features(x) ``` ## Attention maps You can visualize the attention maps using the `attn_masks` returned by the model. Go check the mlx-image [notebook](https://github.com/riccardomusmeci/mlx-image/notebooks/dino_attention.ipynb).
Attention Map