update model card README.md
Browse files
README.md
CHANGED
@@ -20,11 +20,11 @@ model-index:
|
|
20 |
- name: Accuracy
|
21 |
type: accuracy
|
22 |
value:
|
23 |
-
accuracy: 0.
|
24 |
- name: F1
|
25 |
type: f1
|
26 |
value:
|
27 |
-
f1: 0.
|
28 |
---
|
29 |
|
30 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -34,9 +34,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
34 |
|
35 |
This model is a fine-tuned version of [](https://huggingface.co/) on the preprocessed1024_config dataset.
|
36 |
It achieves the following results on the evaluation set:
|
37 |
-
- Loss:
|
38 |
-
- Accuracy: {'accuracy': 0.
|
39 |
-
- F1: {'f1': 0.
|
40 |
|
41 |
## Model description
|
42 |
|
@@ -61,13 +61,22 @@ The following hyperparameters were used during training:
|
|
61 |
- seed: 42
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: linear
|
64 |
-
- num_epochs:
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1
|
69 |
-
|
70 |
-
| 1.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
|
73 |
### Framework versions
|
|
|
20 |
- name: Accuracy
|
21 |
type: accuracy
|
22 |
value:
|
23 |
+
accuracy: 0.6011306532663316
|
24 |
- name: F1
|
25 |
type: f1
|
26 |
value:
|
27 |
+
f1: 0.5956396413406886
|
28 |
---
|
29 |
|
30 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
34 |
|
35 |
This model is a fine-tuned version of [](https://huggingface.co/) on the preprocessed1024_config dataset.
|
36 |
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 1.1353
|
38 |
+
- Accuracy: {'accuracy': 0.6011306532663316}
|
39 |
+
- F1: {'f1': 0.5956396413406886}
|
40 |
|
41 |
## Model description
|
42 |
|
|
|
61 |
- seed: 42
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: linear
|
64 |
+
- num_epochs: 10
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:---------------------------:|
|
70 |
+
| 1.224 | 1.0 | 796 | 0.9884 | {'accuracy': 0.5276381909547738} | {'f1': 0.40344173017767304} |
|
71 |
+
| 0.96 | 2.0 | 1592 | 0.9255 | {'accuracy': 0.5621859296482412} | {'f1': 0.5134011716404221} |
|
72 |
+
| 0.8878 | 3.0 | 2388 | 0.9308 | {'accuracy': 0.574748743718593} | {'f1': 0.46867195041352344} |
|
73 |
+
| 0.809 | 4.0 | 3184 | 0.8904 | {'accuracy': 0.6067839195979899} | {'f1': 0.5799288651427482} |
|
74 |
+
| 0.7541 | 5.0 | 3980 | 0.8936 | {'accuracy': 0.5954773869346733} | {'f1': 0.5938876317530138} |
|
75 |
+
| 0.6904 | 6.0 | 4776 | 0.8760 | {'accuracy': 0.6118090452261307} | {'f1': 0.6023012293668115} |
|
76 |
+
| 0.6195 | 7.0 | 5572 | 1.0032 | {'accuracy': 0.5917085427135679} | {'f1': 0.5834559014249068} |
|
77 |
+
| 0.5766 | 8.0 | 6368 | 1.0268 | {'accuracy': 0.6023869346733668} | {'f1': 0.5779800559497847} |
|
78 |
+
| 0.4963 | 9.0 | 7164 | 1.0460 | {'accuracy': 0.5992462311557789} | {'f1': 0.5875334711293277} |
|
79 |
+
| 0.4323 | 10.0 | 7960 | 1.1353 | {'accuracy': 0.6011306532663316} | {'f1': 0.5956396413406886} |
|
80 |
|
81 |
|
82 |
### Framework versions
|