ttagu99 commited on
Commit
54d666e
1 Parent(s): d8bf34b
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[PAD]": 32000
3
+ }
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./weights/llama-7b",
3
+ "architectures": [
4
+ "LLaMAForCausalLM"
5
+ ],
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 1,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_sequence_length": 2048,
13
+ "model_type": "llama",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "pad_token_id": -1,
17
+ "rms_norm_eps": 1e-06,
18
+ "tie_word_embeddings": false,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.27.0.dev0",
21
+ "use_cache": true,
22
+ "vocab_size": 32001
23
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.27.0.dev0"
7
+ }
pytorch_model-00001-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46100c50cae947e4b731ffa4bd7867da8926bb371d7399070ae1c4f5a5cc1825
3
+ size 9878005970
pytorch_model-00002-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26206cb9d43194d2032e081e053c89b1b04c700f72b9831746c0bf92a92b16df
3
+ size 9894801014
pytorch_model-00003-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc3d3be3e9fc40da4a0678b351e0beb91aa02c7ccab60efdad6fc90fd86b92a4
3
+ size 7181007033
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26953699328
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00003-of-00003.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
268
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
269
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
270
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
271
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
272
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
273
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
274
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
275
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
276
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
277
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
278
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
279
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
280
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
281
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
282
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
283
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
284
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
285
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
286
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
287
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
288
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
289
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
290
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
291
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
292
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
293
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
294
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
295
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
296
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
297
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
298
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
299
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
300
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
301
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
302
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
303
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
304
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
305
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
306
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
307
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
308
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
309
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
310
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
311
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
312
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
313
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
314
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
315
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
316
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
317
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
318
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
319
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
320
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
321
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
322
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
323
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
324
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
325
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
326
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
327
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
328
+ "model.norm.weight": "pytorch_model-00003-of-00003.bin"
329
+ }
330
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "</s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "[PAD]",
5
+ "unk_token": "</s>"
6
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "",
3
+ "eos_token": "",
4
+ "model_max_length": 512,
5
+ "padding_side": "right",
6
+ "special_tokens_map_file": "./weights/llama-7b/special_tokens_map.json",
7
+ "tokenizer_class": "LLaMATokenizer",
8
+ "unk_token": ""
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,3679 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.998769987699877,
5
+ "global_step": 609,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 1.0526315789473685e-06,
13
+ "loss": 1.5397,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.01,
18
+ "learning_rate": 2.105263157894737e-06,
19
+ "loss": 1.4949,
20
+ "step": 2
21
+ },
22
+ {
23
+ "epoch": 0.01,
24
+ "learning_rate": 3.157894736842105e-06,
25
+ "loss": 1.3147,
26
+ "step": 3
27
+ },
28
+ {
29
+ "epoch": 0.02,
30
+ "learning_rate": 4.210526315789474e-06,
31
+ "loss": 1.2866,
32
+ "step": 4
33
+ },
34
+ {
35
+ "epoch": 0.02,
36
+ "learning_rate": 5.263157894736842e-06,
37
+ "loss": 1.2223,
38
+ "step": 5
39
+ },
40
+ {
41
+ "epoch": 0.03,
42
+ "learning_rate": 6.31578947368421e-06,
43
+ "loss": 1.2316,
44
+ "step": 6
45
+ },
46
+ {
47
+ "epoch": 0.03,
48
+ "learning_rate": 7.368421052631579e-06,
49
+ "loss": 1.1728,
50
+ "step": 7
51
+ },
52
+ {
53
+ "epoch": 0.04,
54
+ "learning_rate": 8.421052631578948e-06,
55
+ "loss": 1.1196,
56
+ "step": 8
57
+ },
58
+ {
59
+ "epoch": 0.04,
60
+ "learning_rate": 9.473684210526315e-06,
61
+ "loss": 1.1286,
62
+ "step": 9
63
+ },
64
+ {
65
+ "epoch": 0.05,
66
+ "learning_rate": 1.0526315789473684e-05,
67
+ "loss": 1.1144,
68
+ "step": 10
69
+ },
70
+ {
71
+ "epoch": 0.05,
72
+ "learning_rate": 1.1578947368421053e-05,
73
+ "loss": 1.1363,
74
+ "step": 11
75
+ },
76
+ {
77
+ "epoch": 0.06,
78
+ "learning_rate": 1.263157894736842e-05,
79
+ "loss": 1.145,
80
+ "step": 12
81
+ },
82
+ {
83
+ "epoch": 0.06,
84
+ "learning_rate": 1.3684210526315791e-05,
85
+ "loss": 1.1534,
86
+ "step": 13
87
+ },
88
+ {
89
+ "epoch": 0.07,
90
+ "learning_rate": 1.4736842105263159e-05,
91
+ "loss": 1.1545,
92
+ "step": 14
93
+ },
94
+ {
95
+ "epoch": 0.07,
96
+ "learning_rate": 1.578947368421053e-05,
97
+ "loss": 1.1134,
98
+ "step": 15
99
+ },
100
+ {
101
+ "epoch": 0.08,
102
+ "learning_rate": 1.6842105263157896e-05,
103
+ "loss": 1.1728,
104
+ "step": 16
105
+ },
106
+ {
107
+ "epoch": 0.08,
108
+ "learning_rate": 1.7894736842105264e-05,
109
+ "loss": 1.066,
110
+ "step": 17
111
+ },
112
+ {
113
+ "epoch": 0.09,
114
+ "learning_rate": 1.894736842105263e-05,
115
+ "loss": 1.0792,
116
+ "step": 18
117
+ },
118
+ {
119
+ "epoch": 0.09,
120
+ "learning_rate": 2e-05,
121
+ "loss": 1.1199,
122
+ "step": 19
123
+ },
124
+ {
125
+ "epoch": 0.1,
126
+ "learning_rate": 1.9999858236410775e-05,
127
+ "loss": 1.0901,
128
+ "step": 20
129
+ },
130
+ {
131
+ "epoch": 0.1,
132
+ "learning_rate": 1.9999432949662483e-05,
133
+ "loss": 1.104,
134
+ "step": 21
135
+ },
136
+ {
137
+ "epoch": 0.11,
138
+ "learning_rate": 1.9998724151813157e-05,
139
+ "loss": 1.0508,
140
+ "step": 22
141
+ },
142
+ {
143
+ "epoch": 0.11,
144
+ "learning_rate": 1.9997731862959143e-05,
145
+ "loss": 1.0277,
146
+ "step": 23
147
+ },
148
+ {
149
+ "epoch": 0.12,
150
+ "learning_rate": 1.999645611123453e-05,
151
+ "loss": 1.1162,
152
+ "step": 24
153
+ },
154
+ {
155
+ "epoch": 0.12,
156
+ "learning_rate": 1.999489693281034e-05,
157
+ "loss": 1.0931,
158
+ "step": 25
159
+ },
160
+ {
161
+ "epoch": 0.13,
162
+ "learning_rate": 1.9993054371893526e-05,
163
+ "loss": 1.0628,
164
+ "step": 26
165
+ },
166
+ {
167
+ "epoch": 0.13,
168
+ "learning_rate": 1.9990928480725694e-05,
169
+ "loss": 1.1253,
170
+ "step": 27
171
+ },
172
+ {
173
+ "epoch": 0.14,
174
+ "learning_rate": 1.9988519319581637e-05,
175
+ "loss": 1.0444,
176
+ "step": 28
177
+ },
178
+ {
179
+ "epoch": 0.14,
180
+ "learning_rate": 1.998582695676762e-05,
181
+ "loss": 1.0667,
182
+ "step": 29
183
+ },
184
+ {
185
+ "epoch": 0.15,
186
+ "learning_rate": 1.998285146861945e-05,
187
+ "loss": 1.1212,
188
+ "step": 30
189
+ },
190
+ {
191
+ "epoch": 0.15,
192
+ "learning_rate": 1.99795929395003e-05,
193
+ "loss": 1.0649,
194
+ "step": 31
195
+ },
196
+ {
197
+ "epoch": 0.16,
198
+ "learning_rate": 1.997605146179833e-05,
199
+ "loss": 1.0489,
200
+ "step": 32
201
+ },
202
+ {
203
+ "epoch": 0.16,
204
+ "learning_rate": 1.997222713592405e-05,
205
+ "loss": 1.1362,
206
+ "step": 33
207
+ },
208
+ {
209
+ "epoch": 0.17,
210
+ "learning_rate": 1.9968120070307503e-05,
211
+ "loss": 1.0922,
212
+ "step": 34
213
+ },
214
+ {
215
+ "epoch": 0.17,
216
+ "learning_rate": 1.9963730381395154e-05,
217
+ "loss": 1.0754,
218
+ "step": 35
219
+ },
220
+ {
221
+ "epoch": 0.18,
222
+ "learning_rate": 1.9959058193646618e-05,
223
+ "loss": 1.1088,
224
+ "step": 36
225
+ },
226
+ {
227
+ "epoch": 0.18,
228
+ "learning_rate": 1.9954103639531116e-05,
229
+ "loss": 1.068,
230
+ "step": 37
231
+ },
232
+ {
233
+ "epoch": 0.19,
234
+ "learning_rate": 1.9948866859523717e-05,
235
+ "loss": 1.0917,
236
+ "step": 38
237
+ },
238
+ {
239
+ "epoch": 0.19,
240
+ "learning_rate": 1.9943348002101374e-05,
241
+ "loss": 1.0667,
242
+ "step": 39
243
+ },
244
+ {
245
+ "epoch": 0.2,
246
+ "learning_rate": 1.993754722373869e-05,
247
+ "loss": 1.0814,
248
+ "step": 40
249
+ },
250
+ {
251
+ "epoch": 0.2,
252
+ "learning_rate": 1.9931464688903502e-05,
253
+ "loss": 1.1246,
254
+ "step": 41
255
+ },
256
+ {
257
+ "epoch": 0.21,
258
+ "learning_rate": 1.9925100570052194e-05,
259
+ "loss": 1.1188,
260
+ "step": 42
261
+ },
262
+ {
263
+ "epoch": 0.21,
264
+ "learning_rate": 1.9918455047624847e-05,
265
+ "loss": 1.0822,
266
+ "step": 43
267
+ },
268
+ {
269
+ "epoch": 0.22,
270
+ "learning_rate": 1.9911528310040073e-05,
271
+ "loss": 1.0676,
272
+ "step": 44
273
+ },
274
+ {
275
+ "epoch": 0.22,
276
+ "learning_rate": 1.990432055368971e-05,
277
+ "loss": 1.1395,
278
+ "step": 45
279
+ },
280
+ {
281
+ "epoch": 0.23,
282
+ "learning_rate": 1.989683198293324e-05,
283
+ "loss": 1.071,
284
+ "step": 46
285
+ },
286
+ {
287
+ "epoch": 0.23,
288
+ "learning_rate": 1.9889062810092002e-05,
289
+ "loss": 1.1088,
290
+ "step": 47
291
+ },
292
+ {
293
+ "epoch": 0.24,
294
+ "learning_rate": 1.9881013255443152e-05,
295
+ "loss": 1.0914,
296
+ "step": 48
297
+ },
298
+ {
299
+ "epoch": 0.24,
300
+ "learning_rate": 1.9872683547213446e-05,
301
+ "loss": 1.0789,
302
+ "step": 49
303
+ },
304
+ {
305
+ "epoch": 0.25,
306
+ "learning_rate": 1.9864073921572756e-05,
307
+ "loss": 1.0881,
308
+ "step": 50
309
+ },
310
+ {
311
+ "epoch": 0.25,
312
+ "learning_rate": 1.9855184622627362e-05,
313
+ "loss": 1.0448,
314
+ "step": 51
315
+ },
316
+ {
317
+ "epoch": 0.26,
318
+ "learning_rate": 1.9846015902413053e-05,
319
+ "loss": 1.1104,
320
+ "step": 52
321
+ },
322
+ {
323
+ "epoch": 0.26,
324
+ "learning_rate": 1.9836568020887963e-05,
325
+ "loss": 1.0214,
326
+ "step": 53
327
+ },
328
+ {
329
+ "epoch": 0.27,
330
+ "learning_rate": 1.982684124592521e-05,
331
+ "loss": 1.0767,
332
+ "step": 54
333
+ },
334
+ {
335
+ "epoch": 0.27,
336
+ "learning_rate": 1.9816835853305306e-05,
337
+ "loss": 1.0387,
338
+ "step": 55
339
+ },
340
+ {
341
+ "epoch": 0.28,
342
+ "learning_rate": 1.9806552126708322e-05,
343
+ "loss": 1.1356,
344
+ "step": 56
345
+ },
346
+ {
347
+ "epoch": 0.28,
348
+ "learning_rate": 1.9795990357705853e-05,
349
+ "loss": 1.0805,
350
+ "step": 57
351
+ },
352
+ {
353
+ "epoch": 0.29,
354
+ "learning_rate": 1.978515084575276e-05,
355
+ "loss": 1.0632,
356
+ "step": 58
357
+ },
358
+ {
359
+ "epoch": 0.29,
360
+ "learning_rate": 1.9774033898178668e-05,
361
+ "loss": 1.03,
362
+ "step": 59
363
+ },
364
+ {
365
+ "epoch": 0.3,
366
+ "learning_rate": 1.976263983017925e-05,
367
+ "loss": 1.0842,
368
+ "step": 60
369
+ },
370
+ {
371
+ "epoch": 0.3,
372
+ "learning_rate": 1.9750968964807305e-05,
373
+ "loss": 1.0856,
374
+ "step": 61
375
+ },
376
+ {
377
+ "epoch": 0.31,
378
+ "learning_rate": 1.9739021632963584e-05,
379
+ "loss": 1.0659,
380
+ "step": 62
381
+ },
382
+ {
383
+ "epoch": 0.31,
384
+ "learning_rate": 1.9726798173387417e-05,
385
+ "loss": 1.0767,
386
+ "step": 63
387
+ },
388
+ {
389
+ "epoch": 0.31,
390
+ "learning_rate": 1.97142989326471e-05,
391
+ "loss": 1.1169,
392
+ "step": 64
393
+ },
394
+ {
395
+ "epoch": 0.32,
396
+ "learning_rate": 1.9701524265130088e-05,
397
+ "loss": 1.0467,
398
+ "step": 65
399
+ },
400
+ {
401
+ "epoch": 0.32,
402
+ "learning_rate": 1.9688474533032916e-05,
403
+ "loss": 1.1104,
404
+ "step": 66
405
+ },
406
+ {
407
+ "epoch": 0.33,
408
+ "learning_rate": 1.9675150106350957e-05,
409
+ "loss": 1.0493,
410
+ "step": 67
411
+ },
412
+ {
413
+ "epoch": 0.33,
414
+ "learning_rate": 1.9661551362867926e-05,
415
+ "loss": 1.0514,
416
+ "step": 68
417
+ },
418
+ {
419
+ "epoch": 0.34,
420
+ "learning_rate": 1.9647678688145163e-05,
421
+ "loss": 1.0976,
422
+ "step": 69
423
+ },
424
+ {
425
+ "epoch": 0.34,
426
+ "learning_rate": 1.963353247551069e-05,
427
+ "loss": 1.089,
428
+ "step": 70
429
+ },
430
+ {
431
+ "epoch": 0.35,
432
+ "learning_rate": 1.9619113126048086e-05,
433
+ "loss": 1.071,
434
+ "step": 71
435
+ },
436
+ {
437
+ "epoch": 0.35,
438
+ "learning_rate": 1.96044210485851e-05,
439
+ "loss": 1.0939,
440
+ "step": 72
441
+ },
442
+ {
443
+ "epoch": 0.36,
444
+ "learning_rate": 1.958945665968206e-05,
445
+ "loss": 1.0728,
446
+ "step": 73
447
+ },
448
+ {
449
+ "epoch": 0.36,
450
+ "learning_rate": 1.9574220383620054e-05,
451
+ "loss": 1.0939,
452
+ "step": 74
453
+ },
454
+ {
455
+ "epoch": 0.37,
456
+ "learning_rate": 1.9558712652388932e-05,
457
+ "loss": 1.0701,
458
+ "step": 75
459
+ },
460
+ {
461
+ "epoch": 0.37,
462
+ "learning_rate": 1.954293390567501e-05,
463
+ "loss": 1.0396,
464
+ "step": 76
465
+ },
466
+ {
467
+ "epoch": 0.38,
468
+ "learning_rate": 1.9526884590848646e-05,
469
+ "loss": 1.0998,
470
+ "step": 77
471
+ },
472
+ {
473
+ "epoch": 0.38,
474
+ "learning_rate": 1.9510565162951538e-05,
475
+ "loss": 1.077,
476
+ "step": 78
477
+ },
478
+ {
479
+ "epoch": 0.39,
480
+ "learning_rate": 1.9493976084683814e-05,
481
+ "loss": 1.0443,
482
+ "step": 79
483
+ },
484
+ {
485
+ "epoch": 0.39,
486
+ "learning_rate": 1.9477117826390934e-05,
487
+ "loss": 1.1079,
488
+ "step": 80
489
+ },
490
+ {
491
+ "epoch": 0.4,
492
+ "learning_rate": 1.9459990866050337e-05,
493
+ "loss": 1.0613,
494
+ "step": 81
495
+ },
496
+ {
497
+ "epoch": 0.4,
498
+ "learning_rate": 1.9442595689257898e-05,
499
+ "loss": 1.0936,
500
+ "step": 82
501
+ },
502
+ {
503
+ "epoch": 0.41,
504
+ "learning_rate": 1.9424932789214158e-05,
505
+ "loss": 1.098,
506
+ "step": 83
507
+ },
508
+ {
509
+ "epoch": 0.41,
510
+ "learning_rate": 1.9407002666710334e-05,
511
+ "loss": 1.1072,
512
+ "step": 84
513
+ },
514
+ {
515
+ "epoch": 0.42,
516
+ "learning_rate": 1.9388805830114132e-05,
517
+ "loss": 1.0207,
518
+ "step": 85
519
+ },
520
+ {
521
+ "epoch": 0.42,
522
+ "learning_rate": 1.937034279535533e-05,
523
+ "loss": 1.059,
524
+ "step": 86
525
+ },
526
+ {
527
+ "epoch": 0.43,
528
+ "learning_rate": 1.9351614085911134e-05,
529
+ "loss": 1.0634,
530
+ "step": 87
531
+ },
532
+ {
533
+ "epoch": 0.43,
534
+ "learning_rate": 1.933262023279137e-05,
535
+ "loss": 1.0491,
536
+ "step": 88
537
+ },
538
+ {
539
+ "epoch": 0.44,
540
+ "learning_rate": 1.9313361774523387e-05,
541
+ "loss": 1.1106,
542
+ "step": 89
543
+ },
544
+ {
545
+ "epoch": 0.44,
546
+ "learning_rate": 1.929383925713682e-05,
547
+ "loss": 1.1024,
548
+ "step": 90
549
+ },
550
+ {
551
+ "epoch": 0.45,
552
+ "learning_rate": 1.92740532341481e-05,
553
+ "loss": 1.1535,
554
+ "step": 91
555
+ },
556
+ {
557
+ "epoch": 0.45,
558
+ "learning_rate": 1.925400426654475e-05,
559
+ "loss": 1.0945,
560
+ "step": 92
561
+ },
562
+ {
563
+ "epoch": 0.46,
564
+ "learning_rate": 1.9233692922769497e-05,
565
+ "loss": 1.0854,
566
+ "step": 93
567
+ },
568
+ {
569
+ "epoch": 0.46,
570
+ "learning_rate": 1.921311977870413e-05,
571
+ "loss": 1.1276,
572
+ "step": 94
573
+ },
574
+ {
575
+ "epoch": 0.47,
576
+ "learning_rate": 1.9192285417653208e-05,
577
+ "loss": 1.0584,
578
+ "step": 95
579
+ },
580
+ {
581
+ "epoch": 0.47,
582
+ "learning_rate": 1.917119043032749e-05,
583
+ "loss": 1.0818,
584
+ "step": 96
585
+ },
586
+ {
587
+ "epoch": 0.48,
588
+ "learning_rate": 1.9149835414827193e-05,
589
+ "loss": 1.0789,
590
+ "step": 97
591
+ },
592
+ {
593
+ "epoch": 0.48,
594
+ "learning_rate": 1.912822097662505e-05,
595
+ "loss": 1.0438,
596
+ "step": 98
597
+ },
598
+ {
599
+ "epoch": 0.49,
600
+ "learning_rate": 1.9106347728549134e-05,
601
+ "loss": 1.0522,
602
+ "step": 99
603
+ },
604
+ {
605
+ "epoch": 0.49,
606
+ "learning_rate": 1.908421629076547e-05,
607
+ "loss": 1.094,
608
+ "step": 100
609
+ },
610
+ {
611
+ "epoch": 0.5,
612
+ "learning_rate": 1.9061827290760466e-05,
613
+ "loss": 1.125,
614
+ "step": 101
615
+ },
616
+ {
617
+ "epoch": 0.5,
618
+ "learning_rate": 1.9039181363323128e-05,
619
+ "loss": 1.1126,
620
+ "step": 102
621
+ },
622
+ {
623
+ "epoch": 0.51,
624
+ "learning_rate": 1.9016279150527044e-05,
625
+ "loss": 1.0622,
626
+ "step": 103
627
+ },
628
+ {
629
+ "epoch": 0.51,
630
+ "learning_rate": 1.8993121301712194e-05,
631
+ "loss": 1.1275,
632
+ "step": 104
633
+ },
634
+ {
635
+ "epoch": 0.52,
636
+ "learning_rate": 1.896970847346653e-05,
637
+ "loss": 1.0682,
638
+ "step": 105
639
+ },
640
+ {
641
+ "epoch": 0.52,
642
+ "learning_rate": 1.8946041329607364e-05,
643
+ "loss": 1.0499,
644
+ "step": 106
645
+ },
646
+ {
647
+ "epoch": 0.53,
648
+ "learning_rate": 1.892212054116255e-05,
649
+ "loss": 1.1032,
650
+ "step": 107
651
+ },
652
+ {
653
+ "epoch": 0.53,
654
+ "learning_rate": 1.889794678635145e-05,
655
+ "loss": 1.064,
656
+ "step": 108
657
+ },
658
+ {
659
+ "epoch": 0.54,
660
+ "learning_rate": 1.8873520750565716e-05,
661
+ "loss": 1.058,
662
+ "step": 109
663
+ },
664
+ {
665
+ "epoch": 0.54,
666
+ "learning_rate": 1.884884312634985e-05,
667
+ "loss": 1.0842,
668
+ "step": 110
669
+ },
670
+ {
671
+ "epoch": 0.55,
672
+ "learning_rate": 1.8823914613381568e-05,
673
+ "loss": 1.138,
674
+ "step": 111
675
+ },
676
+ {
677
+ "epoch": 0.55,
678
+ "learning_rate": 1.8798735918451963e-05,
679
+ "loss": 1.0833,
680
+ "step": 112
681
+ },
682
+ {
683
+ "epoch": 0.56,
684
+ "learning_rate": 1.8773307755445468e-05,
685
+ "loss": 1.0569,
686
+ "step": 113
687
+ },
688
+ {
689
+ "epoch": 0.56,
690
+ "learning_rate": 1.874763084531961e-05,
691
+ "loss": 1.1064,
692
+ "step": 114
693
+ },
694
+ {
695
+ "epoch": 0.57,
696
+ "learning_rate": 1.872170591608459e-05,
697
+ "loss": 1.0578,
698
+ "step": 115
699
+ },
700
+ {
701
+ "epoch": 0.57,
702
+ "learning_rate": 1.86955337027826e-05,
703
+ "loss": 1.0709,
704
+ "step": 116
705
+ },
706
+ {
707
+ "epoch": 0.58,
708
+ "learning_rate": 1.866911494746702e-05,
709
+ "loss": 1.0952,
710
+ "step": 117
711
+ },
712
+ {
713
+ "epoch": 0.58,
714
+ "learning_rate": 1.8642450399181373e-05,
715
+ "loss": 1.1302,
716
+ "step": 118
717
+ },
718
+ {
719
+ "epoch": 0.59,
720
+ "learning_rate": 1.8615540813938063e-05,
721
+ "loss": 1.0602,
722
+ "step": 119
723
+ },
724
+ {
725
+ "epoch": 0.59,
726
+ "learning_rate": 1.8588386954696972e-05,
727
+ "loss": 1.0309,
728
+ "step": 120
729
+ },
730
+ {
731
+ "epoch": 0.6,
732
+ "learning_rate": 1.856098959134381e-05,
733
+ "loss": 1.0907,
734
+ "step": 121
735
+ },
736
+ {
737
+ "epoch": 0.6,
738
+ "learning_rate": 1.8533349500668295e-05,
739
+ "loss": 1.0744,
740
+ "step": 122
741
+ },
742
+ {
743
+ "epoch": 0.61,
744
+ "learning_rate": 1.850546746634211e-05,
745
+ "loss": 0.9984,
746
+ "step": 123
747
+ },
748
+ {
749
+ "epoch": 0.61,
750
+ "learning_rate": 1.8477344278896708e-05,
751
+ "loss": 1.1185,
752
+ "step": 124
753
+ },
754
+ {
755
+ "epoch": 0.62,
756
+ "learning_rate": 1.84489807357009e-05,
757
+ "loss": 1.1292,
758
+ "step": 125
759
+ },
760
+ {
761
+ "epoch": 0.62,
762
+ "learning_rate": 1.8420377640938204e-05,
763
+ "loss": 1.0726,
764
+ "step": 126
765
+ },
766
+ {
767
+ "epoch": 0.62,
768
+ "learning_rate": 1.839153580558411e-05,
769
+ "loss": 1.079,
770
+ "step": 127
771
+ },
772
+ {
773
+ "epoch": 0.63,
774
+ "learning_rate": 1.8362456047383032e-05,
775
+ "loss": 1.0656,
776
+ "step": 128
777
+ },
778
+ {
779
+ "epoch": 0.63,
780
+ "learning_rate": 1.833313919082515e-05,
781
+ "loss": 1.0485,
782
+ "step": 129
783
+ },
784
+ {
785
+ "epoch": 0.64,
786
+ "learning_rate": 1.8303586067123028e-05,
787
+ "loss": 1.0474,
788
+ "step": 130
789
+ },
790
+ {
791
+ "epoch": 0.64,
792
+ "learning_rate": 1.8273797514188043e-05,
793
+ "loss": 1.0556,
794
+ "step": 131
795
+ },
796
+ {
797
+ "epoch": 0.65,
798
+ "learning_rate": 1.824377437660663e-05,
799
+ "loss": 1.0481,
800
+ "step": 132
801
+ },
802
+ {
803
+ "epoch": 0.65,
804
+ "learning_rate": 1.821351750561634e-05,
805
+ "loss": 1.1042,
806
+ "step": 133
807
+ },
808
+ {
809
+ "epoch": 0.66,
810
+ "learning_rate": 1.818302775908169e-05,
811
+ "loss": 1.1081,
812
+ "step": 134
813
+ },
814
+ {
815
+ "epoch": 0.66,
816
+ "learning_rate": 1.8152306001469875e-05,
817
+ "loss": 1.0592,
818
+ "step": 135
819
+ },
820
+ {
821
+ "epoch": 0.67,
822
+ "learning_rate": 1.8121353103826213e-05,
823
+ "loss": 1.0699,
824
+ "step": 136
825
+ },
826
+ {
827
+ "epoch": 0.67,
828
+ "learning_rate": 1.8090169943749477e-05,
829
+ "loss": 1.1112,
830
+ "step": 137
831
+ },
832
+ {
833
+ "epoch": 0.68,
834
+ "learning_rate": 1.8058757405367003e-05,
835
+ "loss": 1.0817,
836
+ "step": 138
837
+ },
838
+ {
839
+ "epoch": 0.68,
840
+ "learning_rate": 1.8027116379309637e-05,
841
+ "loss": 1.0708,
842
+ "step": 139
843
+ },
844
+ {
845
+ "epoch": 0.69,
846
+ "learning_rate": 1.799524776268646e-05,
847
+ "loss": 1.0717,
848
+ "step": 140
849
+ },
850
+ {
851
+ "epoch": 0.69,
852
+ "learning_rate": 1.796315245905936e-05,
853
+ "loss": 1.1142,
854
+ "step": 141
855
+ },
856
+ {
857
+ "epoch": 0.7,
858
+ "learning_rate": 1.7930831378417437e-05,
859
+ "loss": 1.0944,
860
+ "step": 142
861
+ },
862
+ {
863
+ "epoch": 0.7,
864
+ "learning_rate": 1.7898285437151163e-05,
865
+ "loss": 1.0791,
866
+ "step": 143
867
+ },
868
+ {
869
+ "epoch": 0.71,
870
+ "learning_rate": 1.786551555802643e-05,
871
+ "loss": 1.0577,
872
+ "step": 144
873
+ },
874
+ {
875
+ "epoch": 0.71,
876
+ "learning_rate": 1.783252267015837e-05,
877
+ "loss": 1.0449,
878
+ "step": 145
879
+ },
880
+ {
881
+ "epoch": 0.72,
882
+ "learning_rate": 1.779930770898503e-05,
883
+ "loss": 1.0302,
884
+ "step": 146
885
+ },
886
+ {
887
+ "epoch": 0.72,
888
+ "learning_rate": 1.776587161624083e-05,
889
+ "loss": 1.0962,
890
+ "step": 147
891
+ },
892
+ {
893
+ "epoch": 0.73,
894
+ "learning_rate": 1.7732215339929874e-05,
895
+ "loss": 1.0763,
896
+ "step": 148
897
+ },
898
+ {
899
+ "epoch": 0.73,
900
+ "learning_rate": 1.7698339834299064e-05,
901
+ "loss": 1.0331,
902
+ "step": 149
903
+ },
904
+ {
905
+ "epoch": 0.74,
906
+ "learning_rate": 1.7664246059811058e-05,
907
+ "loss": 1.056,
908
+ "step": 150
909
+ },
910
+ {
911
+ "epoch": 0.74,
912
+ "learning_rate": 1.7629934983117025e-05,
913
+ "loss": 1.0365,
914
+ "step": 151
915
+ },
916
+ {
917
+ "epoch": 0.75,
918
+ "learning_rate": 1.759540757702924e-05,
919
+ "loss": 1.0676,
920
+ "step": 152
921
+ },
922
+ {
923
+ "epoch": 0.75,
924
+ "learning_rate": 1.7560664820493502e-05,
925
+ "loss": 1.0716,
926
+ "step": 153
927
+ },
928
+ {
929
+ "epoch": 0.76,
930
+ "learning_rate": 1.7525707698561383e-05,
931
+ "loss": 1.0745,
932
+ "step": 154
933
+ },
934
+ {
935
+ "epoch": 0.76,
936
+ "learning_rate": 1.7490537202362313e-05,
937
+ "loss": 1.0657,
938
+ "step": 155
939
+ },
940
+ {
941
+ "epoch": 0.77,
942
+ "learning_rate": 1.7455154329075427e-05,
943
+ "loss": 1.089,
944
+ "step": 156
945
+ },
946
+ {
947
+ "epoch": 0.77,
948
+ "learning_rate": 1.741956008190136e-05,
949
+ "loss": 1.1019,
950
+ "step": 157
951
+ },
952
+ {
953
+ "epoch": 0.78,
954
+ "learning_rate": 1.7383755470033756e-05,
955
+ "loss": 1.0849,
956
+ "step": 158
957
+ },
958
+ {
959
+ "epoch": 0.78,
960
+ "learning_rate": 1.7347741508630673e-05,
961
+ "loss": 1.0804,
962
+ "step": 159
963
+ },
964
+ {
965
+ "epoch": 0.79,
966
+ "learning_rate": 1.73115192187858e-05,
967
+ "loss": 1.0713,
968
+ "step": 160
969
+ },
970
+ {
971
+ "epoch": 0.79,
972
+ "learning_rate": 1.7275089627499493e-05,
973
+ "loss": 1.0767,
974
+ "step": 161
975
+ },
976
+ {
977
+ "epoch": 0.8,
978
+ "learning_rate": 1.7238453767649683e-05,
979
+ "loss": 1.1313,
980
+ "step": 162
981
+ },
982
+ {
983
+ "epoch": 0.8,
984
+ "learning_rate": 1.720161267796256e-05,
985
+ "loss": 1.0129,
986
+ "step": 163
987
+ },
988
+ {
989
+ "epoch": 0.81,
990
+ "learning_rate": 1.7164567402983153e-05,
991
+ "loss": 1.0909,
992
+ "step": 164
993
+ },
994
+ {
995
+ "epoch": 0.81,
996
+ "learning_rate": 1.7127318993045686e-05,
997
+ "loss": 1.1132,
998
+ "step": 165
999
+ },
1000
+ {
1001
+ "epoch": 0.82,
1002
+ "learning_rate": 1.7089868504243816e-05,
1003
+ "loss": 1.0205,
1004
+ "step": 166
1005
+ },
1006
+ {
1007
+ "epoch": 0.82,
1008
+ "learning_rate": 1.705221699840069e-05,
1009
+ "loss": 1.0696,
1010
+ "step": 167
1011
+ },
1012
+ {
1013
+ "epoch": 0.83,
1014
+ "learning_rate": 1.701436554303882e-05,
1015
+ "loss": 1.0497,
1016
+ "step": 168
1017
+ },
1018
+ {
1019
+ "epoch": 0.83,
1020
+ "learning_rate": 1.6976315211349848e-05,
1021
+ "loss": 1.0987,
1022
+ "step": 169
1023
+ },
1024
+ {
1025
+ "epoch": 0.84,
1026
+ "learning_rate": 1.6938067082164093e-05,
1027
+ "loss": 1.0228,
1028
+ "step": 170
1029
+ },
1030
+ {
1031
+ "epoch": 0.84,
1032
+ "learning_rate": 1.6899622239919965e-05,
1033
+ "loss": 1.0599,
1034
+ "step": 171
1035
+ },
1036
+ {
1037
+ "epoch": 0.85,
1038
+ "learning_rate": 1.6860981774633228e-05,
1039
+ "loss": 1.0491,
1040
+ "step": 172
1041
+ },
1042
+ {
1043
+ "epoch": 0.85,
1044
+ "learning_rate": 1.6822146781866097e-05,
1045
+ "loss": 1.0111,
1046
+ "step": 173
1047
+ },
1048
+ {
1049
+ "epoch": 0.86,
1050
+ "learning_rate": 1.6783118362696162e-05,
1051
+ "loss": 1.1352,
1052
+ "step": 174
1053
+ },
1054
+ {
1055
+ "epoch": 0.86,
1056
+ "learning_rate": 1.6743897623685178e-05,
1057
+ "loss": 1.109,
1058
+ "step": 175
1059
+ },
1060
+ {
1061
+ "epoch": 0.87,
1062
+ "learning_rate": 1.6704485676847695e-05,
1063
+ "loss": 1.0585,
1064
+ "step": 176
1065
+ },
1066
+ {
1067
+ "epoch": 0.87,
1068
+ "learning_rate": 1.666488363961952e-05,
1069
+ "loss": 1.0871,
1070
+ "step": 177
1071
+ },
1072
+ {
1073
+ "epoch": 0.88,
1074
+ "learning_rate": 1.662509263482604e-05,
1075
+ "loss": 1.0678,
1076
+ "step": 178
1077
+ },
1078
+ {
1079
+ "epoch": 0.88,
1080
+ "learning_rate": 1.658511379065039e-05,
1081
+ "loss": 1.0743,
1082
+ "step": 179
1083
+ },
1084
+ {
1085
+ "epoch": 0.89,
1086
+ "learning_rate": 1.6544948240601453e-05,
1087
+ "loss": 1.0745,
1088
+ "step": 180
1089
+ },
1090
+ {
1091
+ "epoch": 0.89,
1092
+ "learning_rate": 1.6504597123481737e-05,
1093
+ "loss": 1.056,
1094
+ "step": 181
1095
+ },
1096
+ {
1097
+ "epoch": 0.9,
1098
+ "learning_rate": 1.6464061583355088e-05,
1099
+ "loss": 1.0329,
1100
+ "step": 182
1101
+ },
1102
+ {
1103
+ "epoch": 0.9,
1104
+ "learning_rate": 1.6423342769514227e-05,
1105
+ "loss": 1.1175,
1106
+ "step": 183
1107
+ },
1108
+ {
1109
+ "epoch": 0.91,
1110
+ "learning_rate": 1.6382441836448203e-05,
1111
+ "loss": 1.0953,
1112
+ "step": 184
1113
+ },
1114
+ {
1115
+ "epoch": 0.91,
1116
+ "learning_rate": 1.6341359943809626e-05,
1117
+ "loss": 1.0879,
1118
+ "step": 185
1119
+ },
1120
+ {
1121
+ "epoch": 0.92,
1122
+ "learning_rate": 1.6300098256381807e-05,
1123
+ "loss": 1.0804,
1124
+ "step": 186
1125
+ },
1126
+ {
1127
+ "epoch": 0.92,
1128
+ "learning_rate": 1.625865794404573e-05,
1129
+ "loss": 1.0758,
1130
+ "step": 187
1131
+ },
1132
+ {
1133
+ "epoch": 0.92,
1134
+ "learning_rate": 1.621704018174688e-05,
1135
+ "loss": 1.0341,
1136
+ "step": 188
1137
+ },
1138
+ {
1139
+ "epoch": 0.93,
1140
+ "learning_rate": 1.617524614946192e-05,
1141
+ "loss": 1.0104,
1142
+ "step": 189
1143
+ },
1144
+ {
1145
+ "epoch": 0.93,
1146
+ "learning_rate": 1.6133277032165264e-05,
1147
+ "loss": 1.0853,
1148
+ "step": 190
1149
+ },
1150
+ {
1151
+ "epoch": 0.94,
1152
+ "learning_rate": 1.6091134019795447e-05,
1153
+ "loss": 1.0603,
1154
+ "step": 191
1155
+ },
1156
+ {
1157
+ "epoch": 0.94,
1158
+ "learning_rate": 1.604881830722141e-05,
1159
+ "loss": 1.0482,
1160
+ "step": 192
1161
+ },
1162
+ {
1163
+ "epoch": 0.95,
1164
+ "learning_rate": 1.600633109420861e-05,
1165
+ "loss": 1.1092,
1166
+ "step": 193
1167
+ },
1168
+ {
1169
+ "epoch": 0.95,
1170
+ "learning_rate": 1.5963673585385016e-05,
1171
+ "loss": 1.099,
1172
+ "step": 194
1173
+ },
1174
+ {
1175
+ "epoch": 0.96,
1176
+ "learning_rate": 1.5920846990206934e-05,
1177
+ "loss": 1.0475,
1178
+ "step": 195
1179
+ },
1180
+ {
1181
+ "epoch": 0.96,
1182
+ "learning_rate": 1.5877852522924733e-05,
1183
+ "loss": 1.0404,
1184
+ "step": 196
1185
+ },
1186
+ {
1187
+ "epoch": 0.97,
1188
+ "learning_rate": 1.5834691402548415e-05,
1189
+ "loss": 1.0965,
1190
+ "step": 197
1191
+ },
1192
+ {
1193
+ "epoch": 0.97,
1194
+ "learning_rate": 1.5791364852813047e-05,
1195
+ "loss": 1.091,
1196
+ "step": 198
1197
+ },
1198
+ {
1199
+ "epoch": 0.98,
1200
+ "learning_rate": 1.5747874102144073e-05,
1201
+ "loss": 1.1011,
1202
+ "step": 199
1203
+ },
1204
+ {
1205
+ "epoch": 0.98,
1206
+ "learning_rate": 1.5704220383622464e-05,
1207
+ "loss": 1.0393,
1208
+ "step": 200
1209
+ },
1210
+ {
1211
+ "epoch": 0.99,
1212
+ "learning_rate": 1.5660404934949798e-05,
1213
+ "loss": 1.073,
1214
+ "step": 201
1215
+ },
1216
+ {
1217
+ "epoch": 0.99,
1218
+ "learning_rate": 1.5616428998413122e-05,
1219
+ "loss": 1.0817,
1220
+ "step": 202
1221
+ },
1222
+ {
1223
+ "epoch": 1.0,
1224
+ "learning_rate": 1.5572293820849754e-05,
1225
+ "loss": 1.1357,
1226
+ "step": 203
1227
+ },
1228
+ {
1229
+ "epoch": 1.0,
1230
+ "learning_rate": 1.5528000653611935e-05,
1231
+ "loss": 1.0179,
1232
+ "step": 204
1233
+ },
1234
+ {
1235
+ "epoch": 1.01,
1236
+ "learning_rate": 1.5483550752531337e-05,
1237
+ "loss": 0.8328,
1238
+ "step": 205
1239
+ },
1240
+ {
1241
+ "epoch": 1.01,
1242
+ "learning_rate": 1.5438945377883463e-05,
1243
+ "loss": 0.7736,
1244
+ "step": 206
1245
+ },
1246
+ {
1247
+ "epoch": 1.02,
1248
+ "learning_rate": 1.5394185794351914e-05,
1249
+ "loss": 0.7821,
1250
+ "step": 207
1251
+ },
1252
+ {
1253
+ "epoch": 1.02,
1254
+ "learning_rate": 1.5349273270992537e-05,
1255
+ "loss": 0.7243,
1256
+ "step": 208
1257
+ },
1258
+ {
1259
+ "epoch": 1.03,
1260
+ "learning_rate": 1.5304209081197425e-05,
1261
+ "loss": 0.7692,
1262
+ "step": 209
1263
+ },
1264
+ {
1265
+ "epoch": 1.03,
1266
+ "learning_rate": 1.5258994502658846e-05,
1267
+ "loss": 0.7812,
1268
+ "step": 210
1269
+ },
1270
+ {
1271
+ "epoch": 1.04,
1272
+ "learning_rate": 1.5213630817332985e-05,
1273
+ "loss": 0.7332,
1274
+ "step": 211
1275
+ },
1276
+ {
1277
+ "epoch": 1.04,
1278
+ "learning_rate": 1.5168119311403611e-05,
1279
+ "loss": 0.7696,
1280
+ "step": 212
1281
+ },
1282
+ {
1283
+ "epoch": 1.05,
1284
+ "learning_rate": 1.512246127524561e-05,
1285
+ "loss": 0.7406,
1286
+ "step": 213
1287
+ },
1288
+ {
1289
+ "epoch": 1.05,
1290
+ "learning_rate": 1.50766580033884e-05,
1291
+ "loss": 0.7596,
1292
+ "step": 214
1293
+ },
1294
+ {
1295
+ "epoch": 1.06,
1296
+ "learning_rate": 1.5030710794479226e-05,
1297
+ "loss": 0.7988,
1298
+ "step": 215
1299
+ },
1300
+ {
1301
+ "epoch": 1.06,
1302
+ "learning_rate": 1.4984620951246333e-05,
1303
+ "loss": 0.7625,
1304
+ "step": 216
1305
+ },
1306
+ {
1307
+ "epoch": 1.07,
1308
+ "learning_rate": 1.4938389780462044e-05,
1309
+ "loss": 0.7679,
1310
+ "step": 217
1311
+ },
1312
+ {
1313
+ "epoch": 1.07,
1314
+ "learning_rate": 1.4892018592905702e-05,
1315
+ "loss": 0.7604,
1316
+ "step": 218
1317
+ },
1318
+ {
1319
+ "epoch": 1.08,
1320
+ "learning_rate": 1.4845508703326504e-05,
1321
+ "loss": 0.772,
1322
+ "step": 219
1323
+ },
1324
+ {
1325
+ "epoch": 1.08,
1326
+ "learning_rate": 1.4798861430406221e-05,
1327
+ "loss": 0.7331,
1328
+ "step": 220
1329
+ },
1330
+ {
1331
+ "epoch": 1.09,
1332
+ "learning_rate": 1.4752078096721827e-05,
1333
+ "loss": 0.7808,
1334
+ "step": 221
1335
+ },
1336
+ {
1337
+ "epoch": 1.09,
1338
+ "learning_rate": 1.4705160028707976e-05,
1339
+ "loss": 0.8213,
1340
+ "step": 222
1341
+ },
1342
+ {
1343
+ "epoch": 1.1,
1344
+ "learning_rate": 1.4658108556619417e-05,
1345
+ "loss": 0.7401,
1346
+ "step": 223
1347
+ },
1348
+ {
1349
+ "epoch": 1.1,
1350
+ "learning_rate": 1.461092501449326e-05,
1351
+ "loss": 0.7548,
1352
+ "step": 224
1353
+ },
1354
+ {
1355
+ "epoch": 1.11,
1356
+ "learning_rate": 1.4563610740111163e-05,
1357
+ "loss": 0.7505,
1358
+ "step": 225
1359
+ },
1360
+ {
1361
+ "epoch": 1.11,
1362
+ "learning_rate": 1.4516167074961394e-05,
1363
+ "loss": 0.7496,
1364
+ "step": 226
1365
+ },
1366
+ {
1367
+ "epoch": 1.12,
1368
+ "learning_rate": 1.4468595364200808e-05,
1369
+ "loss": 0.7812,
1370
+ "step": 227
1371
+ },
1372
+ {
1373
+ "epoch": 1.12,
1374
+ "learning_rate": 1.4420896956616698e-05,
1375
+ "loss": 0.7651,
1376
+ "step": 228
1377
+ },
1378
+ {
1379
+ "epoch": 1.13,
1380
+ "learning_rate": 1.4373073204588556e-05,
1381
+ "loss": 0.7519,
1382
+ "step": 229
1383
+ },
1384
+ {
1385
+ "epoch": 1.13,
1386
+ "learning_rate": 1.4325125464049725e-05,
1387
+ "loss": 0.7547,
1388
+ "step": 230
1389
+ },
1390
+ {
1391
+ "epoch": 1.14,
1392
+ "learning_rate": 1.427705509444897e-05,
1393
+ "loss": 0.7795,
1394
+ "step": 231
1395
+ },
1396
+ {
1397
+ "epoch": 1.14,
1398
+ "learning_rate": 1.4228863458711915e-05,
1399
+ "loss": 0.7737,
1400
+ "step": 232
1401
+ },
1402
+ {
1403
+ "epoch": 1.15,
1404
+ "learning_rate": 1.4180551923202406e-05,
1405
+ "loss": 0.765,
1406
+ "step": 233
1407
+ },
1408
+ {
1409
+ "epoch": 1.15,
1410
+ "learning_rate": 1.4132121857683782e-05,
1411
+ "loss": 0.7702,
1412
+ "step": 234
1413
+ },
1414
+ {
1415
+ "epoch": 1.16,
1416
+ "learning_rate": 1.4083574635280029e-05,
1417
+ "loss": 0.7377,
1418
+ "step": 235
1419
+ },
1420
+ {
1421
+ "epoch": 1.16,
1422
+ "learning_rate": 1.403491163243684e-05,
1423
+ "loss": 0.7839,
1424
+ "step": 236
1425
+ },
1426
+ {
1427
+ "epoch": 1.17,
1428
+ "learning_rate": 1.3986134228882607e-05,
1429
+ "loss": 0.78,
1430
+ "step": 237
1431
+ },
1432
+ {
1433
+ "epoch": 1.17,
1434
+ "learning_rate": 1.3937243807589291e-05,
1435
+ "loss": 0.7625,
1436
+ "step": 238
1437
+ },
1438
+ {
1439
+ "epoch": 1.18,
1440
+ "learning_rate": 1.388824175473321e-05,
1441
+ "loss": 0.7124,
1442
+ "step": 239
1443
+ },
1444
+ {
1445
+ "epoch": 1.18,
1446
+ "learning_rate": 1.383912945965574e-05,
1447
+ "loss": 0.769,
1448
+ "step": 240
1449
+ },
1450
+ {
1451
+ "epoch": 1.19,
1452
+ "learning_rate": 1.3789908314823932e-05,
1453
+ "loss": 0.7558,
1454
+ "step": 241
1455
+ },
1456
+ {
1457
+ "epoch": 1.19,
1458
+ "learning_rate": 1.3740579715791017e-05,
1459
+ "loss": 0.7784,
1460
+ "step": 242
1461
+ },
1462
+ {
1463
+ "epoch": 1.2,
1464
+ "learning_rate": 1.3691145061156843e-05,
1465
+ "loss": 0.7463,
1466
+ "step": 243
1467
+ },
1468
+ {
1469
+ "epoch": 1.2,
1470
+ "learning_rate": 1.3641605752528225e-05,
1471
+ "loss": 0.7399,
1472
+ "step": 244
1473
+ },
1474
+ {
1475
+ "epoch": 1.21,
1476
+ "learning_rate": 1.3591963194479198e-05,
1477
+ "loss": 0.7394,
1478
+ "step": 245
1479
+ },
1480
+ {
1481
+ "epoch": 1.21,
1482
+ "learning_rate": 1.3542218794511212e-05,
1483
+ "loss": 0.8021,
1484
+ "step": 246
1485
+ },
1486
+ {
1487
+ "epoch": 1.22,
1488
+ "learning_rate": 1.3492373963013199e-05,
1489
+ "loss": 0.77,
1490
+ "step": 247
1491
+ },
1492
+ {
1493
+ "epoch": 1.22,
1494
+ "learning_rate": 1.3442430113221602e-05,
1495
+ "loss": 0.7032,
1496
+ "step": 248
1497
+ },
1498
+ {
1499
+ "epoch": 1.23,
1500
+ "learning_rate": 1.3392388661180303e-05,
1501
+ "loss": 0.7616,
1502
+ "step": 249
1503
+ },
1504
+ {
1505
+ "epoch": 1.23,
1506
+ "learning_rate": 1.3342251025700474e-05,
1507
+ "loss": 0.7574,
1508
+ "step": 250
1509
+ },
1510
+ {
1511
+ "epoch": 1.24,
1512
+ "learning_rate": 1.3292018628320346e-05,
1513
+ "loss": 0.7177,
1514
+ "step": 251
1515
+ },
1516
+ {
1517
+ "epoch": 1.24,
1518
+ "learning_rate": 1.3241692893264909e-05,
1519
+ "loss": 0.7939,
1520
+ "step": 252
1521
+ },
1522
+ {
1523
+ "epoch": 1.25,
1524
+ "learning_rate": 1.3191275247405525e-05,
1525
+ "loss": 0.7564,
1526
+ "step": 253
1527
+ },
1528
+ {
1529
+ "epoch": 1.25,
1530
+ "learning_rate": 1.314076712021949e-05,
1531
+ "loss": 0.7174,
1532
+ "step": 254
1533
+ },
1534
+ {
1535
+ "epoch": 1.26,
1536
+ "learning_rate": 1.3090169943749475e-05,
1537
+ "loss": 0.7017,
1538
+ "step": 255
1539
+ },
1540
+ {
1541
+ "epoch": 1.26,
1542
+ "learning_rate": 1.3039485152562951e-05,
1543
+ "loss": 0.7499,
1544
+ "step": 256
1545
+ },
1546
+ {
1547
+ "epoch": 1.27,
1548
+ "learning_rate": 1.2988714183711504e-05,
1549
+ "loss": 0.7459,
1550
+ "step": 257
1551
+ },
1552
+ {
1553
+ "epoch": 1.27,
1554
+ "learning_rate": 1.2937858476690089e-05,
1555
+ "loss": 0.7913,
1556
+ "step": 258
1557
+ },
1558
+ {
1559
+ "epoch": 1.28,
1560
+ "learning_rate": 1.2886919473396212e-05,
1561
+ "loss": 0.7785,
1562
+ "step": 259
1563
+ },
1564
+ {
1565
+ "epoch": 1.28,
1566
+ "learning_rate": 1.2835898618089064e-05,
1567
+ "loss": 0.75,
1568
+ "step": 260
1569
+ },
1570
+ {
1571
+ "epoch": 1.29,
1572
+ "learning_rate": 1.2784797357348562e-05,
1573
+ "loss": 0.7123,
1574
+ "step": 261
1575
+ },
1576
+ {
1577
+ "epoch": 1.29,
1578
+ "learning_rate": 1.2733617140034329e-05,
1579
+ "loss": 0.7353,
1580
+ "step": 262
1581
+ },
1582
+ {
1583
+ "epoch": 1.3,
1584
+ "learning_rate": 1.268235941724463e-05,
1585
+ "loss": 0.7229,
1586
+ "step": 263
1587
+ },
1588
+ {
1589
+ "epoch": 1.3,
1590
+ "learning_rate": 1.2631025642275212e-05,
1591
+ "loss": 0.7361,
1592
+ "step": 264
1593
+ },
1594
+ {
1595
+ "epoch": 1.31,
1596
+ "learning_rate": 1.257961727057812e-05,
1597
+ "loss": 0.7379,
1598
+ "step": 265
1599
+ },
1600
+ {
1601
+ "epoch": 1.31,
1602
+ "learning_rate": 1.2528135759720403e-05,
1603
+ "loss": 0.7684,
1604
+ "step": 266
1605
+ },
1606
+ {
1607
+ "epoch": 1.31,
1608
+ "learning_rate": 1.2476582569342819e-05,
1609
+ "loss": 0.7953,
1610
+ "step": 267
1611
+ },
1612
+ {
1613
+ "epoch": 1.32,
1614
+ "learning_rate": 1.2424959161118425e-05,
1615
+ "loss": 0.7435,
1616
+ "step": 268
1617
+ },
1618
+ {
1619
+ "epoch": 1.32,
1620
+ "learning_rate": 1.2373266998711152e-05,
1621
+ "loss": 0.7403,
1622
+ "step": 269
1623
+ },
1624
+ {
1625
+ "epoch": 1.33,
1626
+ "learning_rate": 1.232150754773429e-05,
1627
+ "loss": 0.7627,
1628
+ "step": 270
1629
+ },
1630
+ {
1631
+ "epoch": 1.33,
1632
+ "learning_rate": 1.2269682275708951e-05,
1633
+ "loss": 0.7323,
1634
+ "step": 271
1635
+ },
1636
+ {
1637
+ "epoch": 1.34,
1638
+ "learning_rate": 1.2217792652022452e-05,
1639
+ "loss": 0.7437,
1640
+ "step": 272
1641
+ },
1642
+ {
1643
+ "epoch": 1.34,
1644
+ "learning_rate": 1.2165840147886656e-05,
1645
+ "loss": 0.7108,
1646
+ "step": 273
1647
+ },
1648
+ {
1649
+ "epoch": 1.35,
1650
+ "learning_rate": 1.2113826236296245e-05,
1651
+ "loss": 0.7599,
1652
+ "step": 274
1653
+ },
1654
+ {
1655
+ "epoch": 1.35,
1656
+ "learning_rate": 1.2061752391986982e-05,
1657
+ "loss": 0.7445,
1658
+ "step": 275
1659
+ },
1660
+ {
1661
+ "epoch": 1.36,
1662
+ "learning_rate": 1.2009620091393885e-05,
1663
+ "loss": 0.7244,
1664
+ "step": 276
1665
+ },
1666
+ {
1667
+ "epoch": 1.36,
1668
+ "learning_rate": 1.1957430812609361e-05,
1669
+ "loss": 0.771,
1670
+ "step": 277
1671
+ },
1672
+ {
1673
+ "epoch": 1.37,
1674
+ "learning_rate": 1.1905186035341304e-05,
1675
+ "loss": 0.7079,
1676
+ "step": 278
1677
+ },
1678
+ {
1679
+ "epoch": 1.37,
1680
+ "learning_rate": 1.1852887240871145e-05,
1681
+ "loss": 0.7091,
1682
+ "step": 279
1683
+ },
1684
+ {
1685
+ "epoch": 1.38,
1686
+ "learning_rate": 1.1800535912011846e-05,
1687
+ "loss": 0.7327,
1688
+ "step": 280
1689
+ },
1690
+ {
1691
+ "epoch": 1.38,
1692
+ "learning_rate": 1.1748133533065864e-05,
1693
+ "loss": 0.7545,
1694
+ "step": 281
1695
+ },
1696
+ {
1697
+ "epoch": 1.39,
1698
+ "learning_rate": 1.1695681589783065e-05,
1699
+ "loss": 0.7525,
1700
+ "step": 282
1701
+ },
1702
+ {
1703
+ "epoch": 1.39,
1704
+ "learning_rate": 1.1643181569318596e-05,
1705
+ "loss": 0.7116,
1706
+ "step": 283
1707
+ },
1708
+ {
1709
+ "epoch": 1.4,
1710
+ "learning_rate": 1.1590634960190722e-05,
1711
+ "loss": 0.774,
1712
+ "step": 284
1713
+ },
1714
+ {
1715
+ "epoch": 1.4,
1716
+ "learning_rate": 1.1538043252238629e-05,
1717
+ "loss": 0.7504,
1718
+ "step": 285
1719
+ },
1720
+ {
1721
+ "epoch": 1.41,
1722
+ "learning_rate": 1.1485407936580169e-05,
1723
+ "loss": 0.7549,
1724
+ "step": 286
1725
+ },
1726
+ {
1727
+ "epoch": 1.41,
1728
+ "learning_rate": 1.1432730505569597e-05,
1729
+ "loss": 0.7975,
1730
+ "step": 287
1731
+ },
1732
+ {
1733
+ "epoch": 1.42,
1734
+ "learning_rate": 1.1380012452755259e-05,
1735
+ "loss": 0.7763,
1736
+ "step": 288
1737
+ },
1738
+ {
1739
+ "epoch": 1.42,
1740
+ "learning_rate": 1.1327255272837221e-05,
1741
+ "loss": 0.7644,
1742
+ "step": 289
1743
+ },
1744
+ {
1745
+ "epoch": 1.43,
1746
+ "learning_rate": 1.1274460461624925e-05,
1747
+ "loss": 0.7631,
1748
+ "step": 290
1749
+ },
1750
+ {
1751
+ "epoch": 1.43,
1752
+ "learning_rate": 1.1221629515994754e-05,
1753
+ "loss": 0.7855,
1754
+ "step": 291
1755
+ },
1756
+ {
1757
+ "epoch": 1.44,
1758
+ "learning_rate": 1.1168763933847608e-05,
1759
+ "loss": 0.718,
1760
+ "step": 292
1761
+ },
1762
+ {
1763
+ "epoch": 1.44,
1764
+ "learning_rate": 1.1115865214066414e-05,
1765
+ "loss": 0.7703,
1766
+ "step": 293
1767
+ },
1768
+ {
1769
+ "epoch": 1.45,
1770
+ "learning_rate": 1.1062934856473655e-05,
1771
+ "loss": 0.7554,
1772
+ "step": 294
1773
+ },
1774
+ {
1775
+ "epoch": 1.45,
1776
+ "learning_rate": 1.1009974361788822e-05,
1777
+ "loss": 0.778,
1778
+ "step": 295
1779
+ },
1780
+ {
1781
+ "epoch": 1.46,
1782
+ "learning_rate": 1.095698523158588e-05,
1783
+ "loss": 0.7001,
1784
+ "step": 296
1785
+ },
1786
+ {
1787
+ "epoch": 1.46,
1788
+ "learning_rate": 1.0903968968250682e-05,
1789
+ "loss": 0.7327,
1790
+ "step": 297
1791
+ },
1792
+ {
1793
+ "epoch": 1.47,
1794
+ "learning_rate": 1.085092707493839e-05,
1795
+ "loss": 0.7771,
1796
+ "step": 298
1797
+ },
1798
+ {
1799
+ "epoch": 1.47,
1800
+ "learning_rate": 1.0797861055530832e-05,
1801
+ "loss": 0.7421,
1802
+ "step": 299
1803
+ },
1804
+ {
1805
+ "epoch": 1.48,
1806
+ "learning_rate": 1.0744772414593889e-05,
1807
+ "loss": 0.7222,
1808
+ "step": 300
1809
+ },
1810
+ {
1811
+ "epoch": 1.48,
1812
+ "learning_rate": 1.0691662657334815e-05,
1813
+ "loss": 0.7769,
1814
+ "step": 301
1815
+ },
1816
+ {
1817
+ "epoch": 1.49,
1818
+ "learning_rate": 1.0638533289559574e-05,
1819
+ "loss": 0.7164,
1820
+ "step": 302
1821
+ },
1822
+ {
1823
+ "epoch": 1.49,
1824
+ "learning_rate": 1.0585385817630137e-05,
1825
+ "loss": 0.7733,
1826
+ "step": 303
1827
+ },
1828
+ {
1829
+ "epoch": 1.5,
1830
+ "learning_rate": 1.0532221748421786e-05,
1831
+ "loss": 0.7594,
1832
+ "step": 304
1833
+ },
1834
+ {
1835
+ "epoch": 1.5,
1836
+ "learning_rate": 1.047904258928037e-05,
1837
+ "loss": 0.7598,
1838
+ "step": 305
1839
+ },
1840
+ {
1841
+ "epoch": 1.51,
1842
+ "learning_rate": 1.0425849847979586e-05,
1843
+ "loss": 0.77,
1844
+ "step": 306
1845
+ },
1846
+ {
1847
+ "epoch": 1.51,
1848
+ "learning_rate": 1.0372645032678215e-05,
1849
+ "loss": 0.8052,
1850
+ "step": 307
1851
+ },
1852
+ {
1853
+ "epoch": 1.52,
1854
+ "learning_rate": 1.031942965187738e-05,
1855
+ "loss": 0.7603,
1856
+ "step": 308
1857
+ },
1858
+ {
1859
+ "epoch": 1.52,
1860
+ "learning_rate": 1.026620521437775e-05,
1861
+ "loss": 0.7664,
1862
+ "step": 309
1863
+ },
1864
+ {
1865
+ "epoch": 1.53,
1866
+ "learning_rate": 1.0212973229236787e-05,
1867
+ "loss": 0.6943,
1868
+ "step": 310
1869
+ },
1870
+ {
1871
+ "epoch": 1.53,
1872
+ "learning_rate": 1.0159735205725949e-05,
1873
+ "loss": 0.7268,
1874
+ "step": 311
1875
+ },
1876
+ {
1877
+ "epoch": 1.54,
1878
+ "learning_rate": 1.0106492653287893e-05,
1879
+ "loss": 0.7136,
1880
+ "step": 312
1881
+ },
1882
+ {
1883
+ "epoch": 1.54,
1884
+ "learning_rate": 1.0053247081493684e-05,
1885
+ "loss": 0.7736,
1886
+ "step": 313
1887
+ },
1888
+ {
1889
+ "epoch": 1.55,
1890
+ "learning_rate": 1e-05,
1891
+ "loss": 0.7514,
1892
+ "step": 314
1893
+ },
1894
+ {
1895
+ "epoch": 1.55,
1896
+ "learning_rate": 9.946752918506319e-06,
1897
+ "loss": 0.74,
1898
+ "step": 315
1899
+ },
1900
+ {
1901
+ "epoch": 1.56,
1902
+ "learning_rate": 9.893507346712112e-06,
1903
+ "loss": 0.7908,
1904
+ "step": 316
1905
+ },
1906
+ {
1907
+ "epoch": 1.56,
1908
+ "learning_rate": 9.840264794274053e-06,
1909
+ "loss": 0.7607,
1910
+ "step": 317
1911
+ },
1912
+ {
1913
+ "epoch": 1.57,
1914
+ "learning_rate": 9.787026770763216e-06,
1915
+ "loss": 0.759,
1916
+ "step": 318
1917
+ },
1918
+ {
1919
+ "epoch": 1.57,
1920
+ "learning_rate": 9.733794785622254e-06,
1921
+ "loss": 0.7486,
1922
+ "step": 319
1923
+ },
1924
+ {
1925
+ "epoch": 1.58,
1926
+ "learning_rate": 9.680570348122626e-06,
1927
+ "loss": 0.7446,
1928
+ "step": 320
1929
+ },
1930
+ {
1931
+ "epoch": 1.58,
1932
+ "learning_rate": 9.627354967321785e-06,
1933
+ "loss": 0.729,
1934
+ "step": 321
1935
+ },
1936
+ {
1937
+ "epoch": 1.59,
1938
+ "learning_rate": 9.574150152020415e-06,
1939
+ "loss": 0.7691,
1940
+ "step": 322
1941
+ },
1942
+ {
1943
+ "epoch": 1.59,
1944
+ "learning_rate": 9.520957410719632e-06,
1945
+ "loss": 0.6797,
1946
+ "step": 323
1947
+ },
1948
+ {
1949
+ "epoch": 1.6,
1950
+ "learning_rate": 9.467778251578217e-06,
1951
+ "loss": 0.7909,
1952
+ "step": 324
1953
+ },
1954
+ {
1955
+ "epoch": 1.6,
1956
+ "learning_rate": 9.414614182369862e-06,
1957
+ "loss": 0.7697,
1958
+ "step": 325
1959
+ },
1960
+ {
1961
+ "epoch": 1.61,
1962
+ "learning_rate": 9.361466710440428e-06,
1963
+ "loss": 0.7033,
1964
+ "step": 326
1965
+ },
1966
+ {
1967
+ "epoch": 1.61,
1968
+ "learning_rate": 9.308337342665188e-06,
1969
+ "loss": 0.7574,
1970
+ "step": 327
1971
+ },
1972
+ {
1973
+ "epoch": 1.62,
1974
+ "learning_rate": 9.255227585406116e-06,
1975
+ "loss": 0.7688,
1976
+ "step": 328
1977
+ },
1978
+ {
1979
+ "epoch": 1.62,
1980
+ "learning_rate": 9.202138944469168e-06,
1981
+ "loss": 0.7117,
1982
+ "step": 329
1983
+ },
1984
+ {
1985
+ "epoch": 1.62,
1986
+ "learning_rate": 9.149072925061614e-06,
1987
+ "loss": 0.7595,
1988
+ "step": 330
1989
+ },
1990
+ {
1991
+ "epoch": 1.63,
1992
+ "learning_rate": 9.096031031749321e-06,
1993
+ "loss": 0.7503,
1994
+ "step": 331
1995
+ },
1996
+ {
1997
+ "epoch": 1.63,
1998
+ "learning_rate": 9.043014768414125e-06,
1999
+ "loss": 0.7826,
2000
+ "step": 332
2001
+ },
2002
+ {
2003
+ "epoch": 1.64,
2004
+ "learning_rate": 8.99002563821118e-06,
2005
+ "loss": 0.6752,
2006
+ "step": 333
2007
+ },
2008
+ {
2009
+ "epoch": 1.64,
2010
+ "learning_rate": 8.937065143526349e-06,
2011
+ "loss": 0.7268,
2012
+ "step": 334
2013
+ },
2014
+ {
2015
+ "epoch": 1.65,
2016
+ "learning_rate": 8.884134785933588e-06,
2017
+ "loss": 0.7724,
2018
+ "step": 335
2019
+ },
2020
+ {
2021
+ "epoch": 1.65,
2022
+ "learning_rate": 8.831236066152397e-06,
2023
+ "loss": 0.7364,
2024
+ "step": 336
2025
+ },
2026
+ {
2027
+ "epoch": 1.66,
2028
+ "learning_rate": 8.778370484005245e-06,
2029
+ "loss": 0.7333,
2030
+ "step": 337
2031
+ },
2032
+ {
2033
+ "epoch": 1.66,
2034
+ "learning_rate": 8.725539538375078e-06,
2035
+ "loss": 0.7433,
2036
+ "step": 338
2037
+ },
2038
+ {
2039
+ "epoch": 1.67,
2040
+ "learning_rate": 8.672744727162782e-06,
2041
+ "loss": 0.7278,
2042
+ "step": 339
2043
+ },
2044
+ {
2045
+ "epoch": 1.67,
2046
+ "learning_rate": 8.619987547244746e-06,
2047
+ "loss": 0.7664,
2048
+ "step": 340
2049
+ },
2050
+ {
2051
+ "epoch": 1.68,
2052
+ "learning_rate": 8.567269494430404e-06,
2053
+ "loss": 0.6762,
2054
+ "step": 341
2055
+ },
2056
+ {
2057
+ "epoch": 1.68,
2058
+ "learning_rate": 8.514592063419833e-06,
2059
+ "loss": 0.7709,
2060
+ "step": 342
2061
+ },
2062
+ {
2063
+ "epoch": 1.69,
2064
+ "learning_rate": 8.461956747761375e-06,
2065
+ "loss": 0.7025,
2066
+ "step": 343
2067
+ },
2068
+ {
2069
+ "epoch": 1.69,
2070
+ "learning_rate": 8.409365039809282e-06,
2071
+ "loss": 0.7836,
2072
+ "step": 344
2073
+ },
2074
+ {
2075
+ "epoch": 1.7,
2076
+ "learning_rate": 8.356818430681409e-06,
2077
+ "loss": 0.7483,
2078
+ "step": 345
2079
+ },
2080
+ {
2081
+ "epoch": 1.7,
2082
+ "learning_rate": 8.304318410216937e-06,
2083
+ "loss": 0.7586,
2084
+ "step": 346
2085
+ },
2086
+ {
2087
+ "epoch": 1.71,
2088
+ "learning_rate": 8.251866466934137e-06,
2089
+ "loss": 0.7504,
2090
+ "step": 347
2091
+ },
2092
+ {
2093
+ "epoch": 1.71,
2094
+ "learning_rate": 8.199464087988158e-06,
2095
+ "loss": 0.7925,
2096
+ "step": 348
2097
+ },
2098
+ {
2099
+ "epoch": 1.72,
2100
+ "learning_rate": 8.147112759128859e-06,
2101
+ "loss": 0.7456,
2102
+ "step": 349
2103
+ },
2104
+ {
2105
+ "epoch": 1.72,
2106
+ "learning_rate": 8.094813964658698e-06,
2107
+ "loss": 0.6998,
2108
+ "step": 350
2109
+ },
2110
+ {
2111
+ "epoch": 1.73,
2112
+ "learning_rate": 8.042569187390642e-06,
2113
+ "loss": 0.773,
2114
+ "step": 351
2115
+ },
2116
+ {
2117
+ "epoch": 1.73,
2118
+ "learning_rate": 7.990379908606118e-06,
2119
+ "loss": 0.7208,
2120
+ "step": 352
2121
+ },
2122
+ {
2123
+ "epoch": 1.74,
2124
+ "learning_rate": 7.938247608013021e-06,
2125
+ "loss": 0.7817,
2126
+ "step": 353
2127
+ },
2128
+ {
2129
+ "epoch": 1.74,
2130
+ "learning_rate": 7.886173763703757e-06,
2131
+ "loss": 0.6981,
2132
+ "step": 354
2133
+ },
2134
+ {
2135
+ "epoch": 1.75,
2136
+ "learning_rate": 7.834159852113347e-06,
2137
+ "loss": 0.7519,
2138
+ "step": 355
2139
+ },
2140
+ {
2141
+ "epoch": 1.75,
2142
+ "learning_rate": 7.78220734797755e-06,
2143
+ "loss": 0.7504,
2144
+ "step": 356
2145
+ },
2146
+ {
2147
+ "epoch": 1.76,
2148
+ "learning_rate": 7.73031772429105e-06,
2149
+ "loss": 0.7983,
2150
+ "step": 357
2151
+ },
2152
+ {
2153
+ "epoch": 1.76,
2154
+ "learning_rate": 7.678492452265713e-06,
2155
+ "loss": 0.7743,
2156
+ "step": 358
2157
+ },
2158
+ {
2159
+ "epoch": 1.77,
2160
+ "learning_rate": 7.626733001288852e-06,
2161
+ "loss": 0.7903,
2162
+ "step": 359
2163
+ },
2164
+ {
2165
+ "epoch": 1.77,
2166
+ "learning_rate": 7.575040838881578e-06,
2167
+ "loss": 0.7885,
2168
+ "step": 360
2169
+ },
2170
+ {
2171
+ "epoch": 1.78,
2172
+ "learning_rate": 7.523417430657186e-06,
2173
+ "loss": 0.7716,
2174
+ "step": 361
2175
+ },
2176
+ {
2177
+ "epoch": 1.78,
2178
+ "learning_rate": 7.471864240279598e-06,
2179
+ "loss": 0.7268,
2180
+ "step": 362
2181
+ },
2182
+ {
2183
+ "epoch": 1.79,
2184
+ "learning_rate": 7.420382729421883e-06,
2185
+ "loss": 0.757,
2186
+ "step": 363
2187
+ },
2188
+ {
2189
+ "epoch": 1.79,
2190
+ "learning_rate": 7.368974357724789e-06,
2191
+ "loss": 0.7131,
2192
+ "step": 364
2193
+ },
2194
+ {
2195
+ "epoch": 1.8,
2196
+ "learning_rate": 7.317640582755373e-06,
2197
+ "loss": 0.752,
2198
+ "step": 365
2199
+ },
2200
+ {
2201
+ "epoch": 1.8,
2202
+ "learning_rate": 7.266382859965673e-06,
2203
+ "loss": 0.7256,
2204
+ "step": 366
2205
+ },
2206
+ {
2207
+ "epoch": 1.81,
2208
+ "learning_rate": 7.2152026426514395e-06,
2209
+ "loss": 0.7745,
2210
+ "step": 367
2211
+ },
2212
+ {
2213
+ "epoch": 1.81,
2214
+ "learning_rate": 7.164101381910939e-06,
2215
+ "loss": 0.8009,
2216
+ "step": 368
2217
+ },
2218
+ {
2219
+ "epoch": 1.82,
2220
+ "learning_rate": 7.113080526603793e-06,
2221
+ "loss": 0.7996,
2222
+ "step": 369
2223
+ },
2224
+ {
2225
+ "epoch": 1.82,
2226
+ "learning_rate": 7.062141523309918e-06,
2227
+ "loss": 0.7669,
2228
+ "step": 370
2229
+ },
2230
+ {
2231
+ "epoch": 1.83,
2232
+ "learning_rate": 7.011285816288496e-06,
2233
+ "loss": 0.7323,
2234
+ "step": 371
2235
+ },
2236
+ {
2237
+ "epoch": 1.83,
2238
+ "learning_rate": 6.96051484743705e-06,
2239
+ "loss": 0.7264,
2240
+ "step": 372
2241
+ },
2242
+ {
2243
+ "epoch": 1.84,
2244
+ "learning_rate": 6.909830056250527e-06,
2245
+ "loss": 0.7302,
2246
+ "step": 373
2247
+ },
2248
+ {
2249
+ "epoch": 1.84,
2250
+ "learning_rate": 6.859232879780515e-06,
2251
+ "loss": 0.7375,
2252
+ "step": 374
2253
+ },
2254
+ {
2255
+ "epoch": 1.85,
2256
+ "learning_rate": 6.8087247525944745e-06,
2257
+ "loss": 0.7643,
2258
+ "step": 375
2259
+ },
2260
+ {
2261
+ "epoch": 1.85,
2262
+ "learning_rate": 6.758307106735094e-06,
2263
+ "loss": 0.7262,
2264
+ "step": 376
2265
+ },
2266
+ {
2267
+ "epoch": 1.86,
2268
+ "learning_rate": 6.707981371679657e-06,
2269
+ "loss": 0.7343,
2270
+ "step": 377
2271
+ },
2272
+ {
2273
+ "epoch": 1.86,
2274
+ "learning_rate": 6.657748974299529e-06,
2275
+ "loss": 0.7855,
2276
+ "step": 378
2277
+ },
2278
+ {
2279
+ "epoch": 1.87,
2280
+ "learning_rate": 6.607611338819697e-06,
2281
+ "loss": 0.7202,
2282
+ "step": 379
2283
+ },
2284
+ {
2285
+ "epoch": 1.87,
2286
+ "learning_rate": 6.557569886778401e-06,
2287
+ "loss": 0.7384,
2288
+ "step": 380
2289
+ },
2290
+ {
2291
+ "epoch": 1.88,
2292
+ "learning_rate": 6.507626036986804e-06,
2293
+ "loss": 0.7472,
2294
+ "step": 381
2295
+ },
2296
+ {
2297
+ "epoch": 1.88,
2298
+ "learning_rate": 6.457781205488791e-06,
2299
+ "loss": 0.7305,
2300
+ "step": 382
2301
+ },
2302
+ {
2303
+ "epoch": 1.89,
2304
+ "learning_rate": 6.408036805520801e-06,
2305
+ "loss": 0.7094,
2306
+ "step": 383
2307
+ },
2308
+ {
2309
+ "epoch": 1.89,
2310
+ "learning_rate": 6.358394247471779e-06,
2311
+ "loss": 0.6939,
2312
+ "step": 384
2313
+ },
2314
+ {
2315
+ "epoch": 1.9,
2316
+ "learning_rate": 6.308854938843161e-06,
2317
+ "loss": 0.7485,
2318
+ "step": 385
2319
+ },
2320
+ {
2321
+ "epoch": 1.9,
2322
+ "learning_rate": 6.259420284208987e-06,
2323
+ "loss": 0.7384,
2324
+ "step": 386
2325
+ },
2326
+ {
2327
+ "epoch": 1.91,
2328
+ "learning_rate": 6.210091685176067e-06,
2329
+ "loss": 0.6969,
2330
+ "step": 387
2331
+ },
2332
+ {
2333
+ "epoch": 1.91,
2334
+ "learning_rate": 6.160870540344261e-06,
2335
+ "loss": 0.7607,
2336
+ "step": 388
2337
+ },
2338
+ {
2339
+ "epoch": 1.92,
2340
+ "learning_rate": 6.111758245266795e-06,
2341
+ "loss": 0.7404,
2342
+ "step": 389
2343
+ },
2344
+ {
2345
+ "epoch": 1.92,
2346
+ "learning_rate": 6.0627561924107145e-06,
2347
+ "loss": 0.7642,
2348
+ "step": 390
2349
+ },
2350
+ {
2351
+ "epoch": 1.92,
2352
+ "learning_rate": 6.013865771117394e-06,
2353
+ "loss": 0.7739,
2354
+ "step": 391
2355
+ },
2356
+ {
2357
+ "epoch": 1.93,
2358
+ "learning_rate": 5.965088367563162e-06,
2359
+ "loss": 0.7594,
2360
+ "step": 392
2361
+ },
2362
+ {
2363
+ "epoch": 1.93,
2364
+ "learning_rate": 5.916425364719975e-06,
2365
+ "loss": 0.7457,
2366
+ "step": 393
2367
+ },
2368
+ {
2369
+ "epoch": 1.94,
2370
+ "learning_rate": 5.867878142316221e-06,
2371
+ "loss": 0.7704,
2372
+ "step": 394
2373
+ },
2374
+ {
2375
+ "epoch": 1.94,
2376
+ "learning_rate": 5.8194480767976e-06,
2377
+ "loss": 0.746,
2378
+ "step": 395
2379
+ },
2380
+ {
2381
+ "epoch": 1.95,
2382
+ "learning_rate": 5.7711365412880895e-06,
2383
+ "loss": 0.7696,
2384
+ "step": 396
2385
+ },
2386
+ {
2387
+ "epoch": 1.95,
2388
+ "learning_rate": 5.7229449055510335e-06,
2389
+ "loss": 0.7265,
2390
+ "step": 397
2391
+ },
2392
+ {
2393
+ "epoch": 1.96,
2394
+ "learning_rate": 5.674874535950279e-06,
2395
+ "loss": 0.759,
2396
+ "step": 398
2397
+ },
2398
+ {
2399
+ "epoch": 1.96,
2400
+ "learning_rate": 5.626926795411447e-06,
2401
+ "loss": 0.7802,
2402
+ "step": 399
2403
+ },
2404
+ {
2405
+ "epoch": 1.97,
2406
+ "learning_rate": 5.579103043383305e-06,
2407
+ "loss": 0.7529,
2408
+ "step": 400
2409
+ },
2410
+ {
2411
+ "epoch": 1.97,
2412
+ "learning_rate": 5.531404635799191e-06,
2413
+ "loss": 0.7273,
2414
+ "step": 401
2415
+ },
2416
+ {
2417
+ "epoch": 1.98,
2418
+ "learning_rate": 5.4838329250386076e-06,
2419
+ "loss": 0.7826,
2420
+ "step": 402
2421
+ },
2422
+ {
2423
+ "epoch": 1.98,
2424
+ "learning_rate": 5.436389259888841e-06,
2425
+ "loss": 0.7893,
2426
+ "step": 403
2427
+ },
2428
+ {
2429
+ "epoch": 1.99,
2430
+ "learning_rate": 5.38907498550674e-06,
2431
+ "loss": 0.7119,
2432
+ "step": 404
2433
+ },
2434
+ {
2435
+ "epoch": 1.99,
2436
+ "learning_rate": 5.341891443380585e-06,
2437
+ "loss": 0.7694,
2438
+ "step": 405
2439
+ },
2440
+ {
2441
+ "epoch": 2.0,
2442
+ "learning_rate": 5.294839971292026e-06,
2443
+ "loss": 0.7911,
2444
+ "step": 406
2445
+ },
2446
+ {
2447
+ "epoch": 2.0,
2448
+ "learning_rate": 5.247921903278177e-06,
2449
+ "loss": 0.658,
2450
+ "step": 407
2451
+ },
2452
+ {
2453
+ "epoch": 2.01,
2454
+ "learning_rate": 5.20113856959378e-06,
2455
+ "loss": 0.5248,
2456
+ "step": 408
2457
+ },
2458
+ {
2459
+ "epoch": 2.01,
2460
+ "learning_rate": 5.1544912966735e-06,
2461
+ "loss": 0.5485,
2462
+ "step": 409
2463
+ },
2464
+ {
2465
+ "epoch": 2.02,
2466
+ "learning_rate": 5.1079814070943e-06,
2467
+ "loss": 0.564,
2468
+ "step": 410
2469
+ },
2470
+ {
2471
+ "epoch": 2.02,
2472
+ "learning_rate": 5.06161021953796e-06,
2473
+ "loss": 0.5438,
2474
+ "step": 411
2475
+ },
2476
+ {
2477
+ "epoch": 2.03,
2478
+ "learning_rate": 5.015379048753669e-06,
2479
+ "loss": 0.4943,
2480
+ "step": 412
2481
+ },
2482
+ {
2483
+ "epoch": 2.03,
2484
+ "learning_rate": 4.9692892055207784e-06,
2485
+ "loss": 0.562,
2486
+ "step": 413
2487
+ },
2488
+ {
2489
+ "epoch": 2.04,
2490
+ "learning_rate": 4.923341996611604e-06,
2491
+ "loss": 0.5606,
2492
+ "step": 414
2493
+ },
2494
+ {
2495
+ "epoch": 2.04,
2496
+ "learning_rate": 4.877538724754392e-06,
2497
+ "loss": 0.5554,
2498
+ "step": 415
2499
+ },
2500
+ {
2501
+ "epoch": 2.05,
2502
+ "learning_rate": 4.831880688596392e-06,
2503
+ "loss": 0.5444,
2504
+ "step": 416
2505
+ },
2506
+ {
2507
+ "epoch": 2.05,
2508
+ "learning_rate": 4.7863691826670146e-06,
2509
+ "loss": 0.4918,
2510
+ "step": 417
2511
+ },
2512
+ {
2513
+ "epoch": 2.06,
2514
+ "learning_rate": 4.741005497341154e-06,
2515
+ "loss": 0.5216,
2516
+ "step": 418
2517
+ },
2518
+ {
2519
+ "epoch": 2.06,
2520
+ "learning_rate": 4.695790918802577e-06,
2521
+ "loss": 0.5173,
2522
+ "step": 419
2523
+ },
2524
+ {
2525
+ "epoch": 2.07,
2526
+ "learning_rate": 4.650726729007465e-06,
2527
+ "loss": 0.5371,
2528
+ "step": 420
2529
+ },
2530
+ {
2531
+ "epoch": 2.07,
2532
+ "learning_rate": 4.605814205648087e-06,
2533
+ "loss": 0.5041,
2534
+ "step": 421
2535
+ },
2536
+ {
2537
+ "epoch": 2.08,
2538
+ "learning_rate": 4.56105462211654e-06,
2539
+ "loss": 0.5097,
2540
+ "step": 422
2541
+ },
2542
+ {
2543
+ "epoch": 2.08,
2544
+ "learning_rate": 4.516449247468666e-06,
2545
+ "loss": 0.4567,
2546
+ "step": 423
2547
+ },
2548
+ {
2549
+ "epoch": 2.09,
2550
+ "learning_rate": 4.4719993463880695e-06,
2551
+ "loss": 0.502,
2552
+ "step": 424
2553
+ },
2554
+ {
2555
+ "epoch": 2.09,
2556
+ "learning_rate": 4.427706179150247e-06,
2557
+ "loss": 0.4755,
2558
+ "step": 425
2559
+ },
2560
+ {
2561
+ "epoch": 2.1,
2562
+ "learning_rate": 4.383571001586883e-06,
2563
+ "loss": 0.507,
2564
+ "step": 426
2565
+ },
2566
+ {
2567
+ "epoch": 2.1,
2568
+ "learning_rate": 4.339595065050206e-06,
2569
+ "loss": 0.474,
2570
+ "step": 427
2571
+ },
2572
+ {
2573
+ "epoch": 2.11,
2574
+ "learning_rate": 4.29577961637754e-06,
2575
+ "loss": 0.4874,
2576
+ "step": 428
2577
+ },
2578
+ {
2579
+ "epoch": 2.11,
2580
+ "learning_rate": 4.2521258978559324e-06,
2581
+ "loss": 0.4419,
2582
+ "step": 429
2583
+ },
2584
+ {
2585
+ "epoch": 2.12,
2586
+ "learning_rate": 4.208635147186956e-06,
2587
+ "loss": 0.4606,
2588
+ "step": 430
2589
+ },
2590
+ {
2591
+ "epoch": 2.12,
2592
+ "learning_rate": 4.165308597451586e-06,
2593
+ "loss": 0.5074,
2594
+ "step": 431
2595
+ },
2596
+ {
2597
+ "epoch": 2.13,
2598
+ "learning_rate": 4.12214747707527e-06,
2599
+ "loss": 0.5436,
2600
+ "step": 432
2601
+ },
2602
+ {
2603
+ "epoch": 2.13,
2604
+ "learning_rate": 4.079153009793068e-06,
2605
+ "loss": 0.4759,
2606
+ "step": 433
2607
+ },
2608
+ {
2609
+ "epoch": 2.14,
2610
+ "learning_rate": 4.036326414614985e-06,
2611
+ "loss": 0.5115,
2612
+ "step": 434
2613
+ },
2614
+ {
2615
+ "epoch": 2.14,
2616
+ "learning_rate": 3.99366890579139e-06,
2617
+ "loss": 0.4774,
2618
+ "step": 435
2619
+ },
2620
+ {
2621
+ "epoch": 2.15,
2622
+ "learning_rate": 3.951181692778594e-06,
2623
+ "loss": 0.5014,
2624
+ "step": 436
2625
+ },
2626
+ {
2627
+ "epoch": 2.15,
2628
+ "learning_rate": 3.908865980204555e-06,
2629
+ "loss": 0.5389,
2630
+ "step": 437
2631
+ },
2632
+ {
2633
+ "epoch": 2.16,
2634
+ "learning_rate": 3.86672296783474e-06,
2635
+ "loss": 0.498,
2636
+ "step": 438
2637
+ },
2638
+ {
2639
+ "epoch": 2.16,
2640
+ "learning_rate": 3.824753850538082e-06,
2641
+ "loss": 0.5112,
2642
+ "step": 439
2643
+ },
2644
+ {
2645
+ "epoch": 2.17,
2646
+ "learning_rate": 3.782959818253126e-06,
2647
+ "loss": 0.5149,
2648
+ "step": 440
2649
+ },
2650
+ {
2651
+ "epoch": 2.17,
2652
+ "learning_rate": 3.741342055954269e-06,
2653
+ "loss": 0.5024,
2654
+ "step": 441
2655
+ },
2656
+ {
2657
+ "epoch": 2.18,
2658
+ "learning_rate": 3.699901743618194e-06,
2659
+ "loss": 0.5269,
2660
+ "step": 442
2661
+ },
2662
+ {
2663
+ "epoch": 2.18,
2664
+ "learning_rate": 3.658640056190378e-06,
2665
+ "loss": 0.4601,
2666
+ "step": 443
2667
+ },
2668
+ {
2669
+ "epoch": 2.19,
2670
+ "learning_rate": 3.617558163551802e-06,
2671
+ "loss": 0.4366,
2672
+ "step": 444
2673
+ },
2674
+ {
2675
+ "epoch": 2.19,
2676
+ "learning_rate": 3.576657230485775e-06,
2677
+ "loss": 0.5111,
2678
+ "step": 445
2679
+ },
2680
+ {
2681
+ "epoch": 2.2,
2682
+ "learning_rate": 3.5359384166449185e-06,
2683
+ "loss": 0.4604,
2684
+ "step": 446
2685
+ },
2686
+ {
2687
+ "epoch": 2.2,
2688
+ "learning_rate": 3.4954028765182633e-06,
2689
+ "loss": 0.5035,
2690
+ "step": 447
2691
+ },
2692
+ {
2693
+ "epoch": 2.21,
2694
+ "learning_rate": 3.4550517593985512e-06,
2695
+ "loss": 0.5145,
2696
+ "step": 448
2697
+ },
2698
+ {
2699
+ "epoch": 2.21,
2700
+ "learning_rate": 3.414886209349615e-06,
2701
+ "loss": 0.5113,
2702
+ "step": 449
2703
+ },
2704
+ {
2705
+ "epoch": 2.22,
2706
+ "learning_rate": 3.3749073651739594e-06,
2707
+ "loss": 0.4851,
2708
+ "step": 450
2709
+ },
2710
+ {
2711
+ "epoch": 2.22,
2712
+ "learning_rate": 3.3351163603804805e-06,
2713
+ "loss": 0.5437,
2714
+ "step": 451
2715
+ },
2716
+ {
2717
+ "epoch": 2.23,
2718
+ "learning_rate": 3.2955143231523067e-06,
2719
+ "loss": 0.486,
2720
+ "step": 452
2721
+ },
2722
+ {
2723
+ "epoch": 2.23,
2724
+ "learning_rate": 3.2561023763148237e-06,
2725
+ "loss": 0.524,
2726
+ "step": 453
2727
+ },
2728
+ {
2729
+ "epoch": 2.24,
2730
+ "learning_rate": 3.216881637303839e-06,
2731
+ "loss": 0.5032,
2732
+ "step": 454
2733
+ },
2734
+ {
2735
+ "epoch": 2.24,
2736
+ "learning_rate": 3.177853218133905e-06,
2737
+ "loss": 0.5182,
2738
+ "step": 455
2739
+ },
2740
+ {
2741
+ "epoch": 2.25,
2742
+ "learning_rate": 3.1390182253667745e-06,
2743
+ "loss": 0.5124,
2744
+ "step": 456
2745
+ },
2746
+ {
2747
+ "epoch": 2.25,
2748
+ "learning_rate": 3.100377760080041e-06,
2749
+ "loss": 0.4383,
2750
+ "step": 457
2751
+ },
2752
+ {
2753
+ "epoch": 2.26,
2754
+ "learning_rate": 3.0619329178359103e-06,
2755
+ "loss": 0.4617,
2756
+ "step": 458
2757
+ },
2758
+ {
2759
+ "epoch": 2.26,
2760
+ "learning_rate": 3.023684788650154e-06,
2761
+ "loss": 0.4988,
2762
+ "step": 459
2763
+ },
2764
+ {
2765
+ "epoch": 2.27,
2766
+ "learning_rate": 2.985634456961184e-06,
2767
+ "loss": 0.479,
2768
+ "step": 460
2769
+ },
2770
+ {
2771
+ "epoch": 2.27,
2772
+ "learning_rate": 2.947783001599315e-06,
2773
+ "loss": 0.4731,
2774
+ "step": 461
2775
+ },
2776
+ {
2777
+ "epoch": 2.28,
2778
+ "learning_rate": 2.9101314957561864e-06,
2779
+ "loss": 0.4888,
2780
+ "step": 462
2781
+ },
2782
+ {
2783
+ "epoch": 2.28,
2784
+ "learning_rate": 2.8726810069543156e-06,
2785
+ "loss": 0.4998,
2786
+ "step": 463
2787
+ },
2788
+ {
2789
+ "epoch": 2.29,
2790
+ "learning_rate": 2.8354325970168483e-06,
2791
+ "loss": 0.4837,
2792
+ "step": 464
2793
+ },
2794
+ {
2795
+ "epoch": 2.29,
2796
+ "learning_rate": 2.7983873220374415e-06,
2797
+ "loss": 0.4664,
2798
+ "step": 465
2799
+ },
2800
+ {
2801
+ "epoch": 2.3,
2802
+ "learning_rate": 2.7615462323503186e-06,
2803
+ "loss": 0.5497,
2804
+ "step": 466
2805
+ },
2806
+ {
2807
+ "epoch": 2.3,
2808
+ "learning_rate": 2.724910372500508e-06,
2809
+ "loss": 0.5019,
2810
+ "step": 467
2811
+ },
2812
+ {
2813
+ "epoch": 2.31,
2814
+ "learning_rate": 2.6884807812142043e-06,
2815
+ "loss": 0.5103,
2816
+ "step": 468
2817
+ },
2818
+ {
2819
+ "epoch": 2.31,
2820
+ "learning_rate": 2.6522584913693295e-06,
2821
+ "loss": 0.4748,
2822
+ "step": 469
2823
+ },
2824
+ {
2825
+ "epoch": 2.31,
2826
+ "learning_rate": 2.616244529966244e-06,
2827
+ "loss": 0.4815,
2828
+ "step": 470
2829
+ },
2830
+ {
2831
+ "epoch": 2.32,
2832
+ "learning_rate": 2.5804399180986417e-06,
2833
+ "loss": 0.4648,
2834
+ "step": 471
2835
+ },
2836
+ {
2837
+ "epoch": 2.32,
2838
+ "learning_rate": 2.544845670924575e-06,
2839
+ "loss": 0.4673,
2840
+ "step": 472
2841
+ },
2842
+ {
2843
+ "epoch": 2.33,
2844
+ "learning_rate": 2.509462797637693e-06,
2845
+ "loss": 0.487,
2846
+ "step": 473
2847
+ },
2848
+ {
2849
+ "epoch": 2.33,
2850
+ "learning_rate": 2.4742923014386154e-06,
2851
+ "loss": 0.4686,
2852
+ "step": 474
2853
+ },
2854
+ {
2855
+ "epoch": 2.34,
2856
+ "learning_rate": 2.4393351795065023e-06,
2857
+ "loss": 0.5048,
2858
+ "step": 475
2859
+ },
2860
+ {
2861
+ "epoch": 2.34,
2862
+ "learning_rate": 2.4045924229707663e-06,
2863
+ "loss": 0.548,
2864
+ "step": 476
2865
+ },
2866
+ {
2867
+ "epoch": 2.35,
2868
+ "learning_rate": 2.3700650168829765e-06,
2869
+ "loss": 0.4449,
2870
+ "step": 477
2871
+ },
2872
+ {
2873
+ "epoch": 2.35,
2874
+ "learning_rate": 2.3357539401889438e-06,
2875
+ "loss": 0.5208,
2876
+ "step": 478
2877
+ },
2878
+ {
2879
+ "epoch": 2.36,
2880
+ "learning_rate": 2.3016601657009364e-06,
2881
+ "loss": 0.5427,
2882
+ "step": 479
2883
+ },
2884
+ {
2885
+ "epoch": 2.36,
2886
+ "learning_rate": 2.2677846600701305e-06,
2887
+ "loss": 0.5042,
2888
+ "step": 480
2889
+ },
2890
+ {
2891
+ "epoch": 2.37,
2892
+ "learning_rate": 2.234128383759174e-06,
2893
+ "loss": 0.5001,
2894
+ "step": 481
2895
+ },
2896
+ {
2897
+ "epoch": 2.37,
2898
+ "learning_rate": 2.2006922910149743e-06,
2899
+ "loss": 0.4867,
2900
+ "step": 482
2901
+ },
2902
+ {
2903
+ "epoch": 2.38,
2904
+ "learning_rate": 2.167477329841633e-06,
2905
+ "loss": 0.5209,
2906
+ "step": 483
2907
+ },
2908
+ {
2909
+ "epoch": 2.38,
2910
+ "learning_rate": 2.1344844419735757e-06,
2911
+ "loss": 0.523,
2912
+ "step": 484
2913
+ },
2914
+ {
2915
+ "epoch": 2.39,
2916
+ "learning_rate": 2.101714562848841e-06,
2917
+ "loss": 0.4959,
2918
+ "step": 485
2919
+ },
2920
+ {
2921
+ "epoch": 2.39,
2922
+ "learning_rate": 2.069168621582567e-06,
2923
+ "loss": 0.4785,
2924
+ "step": 486
2925
+ },
2926
+ {
2927
+ "epoch": 2.4,
2928
+ "learning_rate": 2.0368475409406396e-06,
2929
+ "loss": 0.492,
2930
+ "step": 487
2931
+ },
2932
+ {
2933
+ "epoch": 2.4,
2934
+ "learning_rate": 2.004752237313544e-06,
2935
+ "loss": 0.5309,
2936
+ "step": 488
2937
+ },
2938
+ {
2939
+ "epoch": 2.41,
2940
+ "learning_rate": 1.972883620690366e-06,
2941
+ "loss": 0.4684,
2942
+ "step": 489
2943
+ },
2944
+ {
2945
+ "epoch": 2.41,
2946
+ "learning_rate": 1.9412425946329994e-06,
2947
+ "loss": 0.5455,
2948
+ "step": 490
2949
+ },
2950
+ {
2951
+ "epoch": 2.42,
2952
+ "learning_rate": 1.9098300562505266e-06,
2953
+ "loss": 0.4745,
2954
+ "step": 491
2955
+ },
2956
+ {
2957
+ "epoch": 2.42,
2958
+ "learning_rate": 1.8786468961737902e-06,
2959
+ "loss": 0.5162,
2960
+ "step": 492
2961
+ },
2962
+ {
2963
+ "epoch": 2.43,
2964
+ "learning_rate": 1.8476939985301257e-06,
2965
+ "loss": 0.5259,
2966
+ "step": 493
2967
+ },
2968
+ {
2969
+ "epoch": 2.43,
2970
+ "learning_rate": 1.81697224091831e-06,
2971
+ "loss": 0.5124,
2972
+ "step": 494
2973
+ },
2974
+ {
2975
+ "epoch": 2.44,
2976
+ "learning_rate": 1.7864824943836633e-06,
2977
+ "loss": 0.4832,
2978
+ "step": 495
2979
+ },
2980
+ {
2981
+ "epoch": 2.44,
2982
+ "learning_rate": 1.7562256233933717e-06,
2983
+ "loss": 0.4756,
2984
+ "step": 496
2985
+ },
2986
+ {
2987
+ "epoch": 2.45,
2988
+ "learning_rate": 1.7262024858119597e-06,
2989
+ "loss": 0.4907,
2990
+ "step": 497
2991
+ },
2992
+ {
2993
+ "epoch": 2.45,
2994
+ "learning_rate": 1.6964139328769736e-06,
2995
+ "loss": 0.5211,
2996
+ "step": 498
2997
+ },
2998
+ {
2999
+ "epoch": 2.46,
3000
+ "learning_rate": 1.6668608091748495e-06,
3001
+ "loss": 0.4783,
3002
+ "step": 499
3003
+ },
3004
+ {
3005
+ "epoch": 2.46,
3006
+ "learning_rate": 1.637543952616969e-06,
3007
+ "loss": 0.5,
3008
+ "step": 500
3009
+ },
3010
+ {
3011
+ "epoch": 2.47,
3012
+ "learning_rate": 1.6084641944158918e-06,
3013
+ "loss": 0.4773,
3014
+ "step": 501
3015
+ },
3016
+ {
3017
+ "epoch": 2.47,
3018
+ "learning_rate": 1.5796223590617987e-06,
3019
+ "loss": 0.5039,
3020
+ "step": 502
3021
+ },
3022
+ {
3023
+ "epoch": 2.48,
3024
+ "learning_rate": 1.5510192642991073e-06,
3025
+ "loss": 0.5622,
3026
+ "step": 503
3027
+ },
3028
+ {
3029
+ "epoch": 2.48,
3030
+ "learning_rate": 1.522655721103291e-06,
3031
+ "loss": 0.4801,
3032
+ "step": 504
3033
+ },
3034
+ {
3035
+ "epoch": 2.49,
3036
+ "learning_rate": 1.494532533657893e-06,
3037
+ "loss": 0.4678,
3038
+ "step": 505
3039
+ },
3040
+ {
3041
+ "epoch": 2.49,
3042
+ "learning_rate": 1.4666504993317089e-06,
3043
+ "loss": 0.5091,
3044
+ "step": 506
3045
+ },
3046
+ {
3047
+ "epoch": 2.5,
3048
+ "learning_rate": 1.4390104086561886e-06,
3049
+ "loss": 0.4625,
3050
+ "step": 507
3051
+ },
3052
+ {
3053
+ "epoch": 2.5,
3054
+ "learning_rate": 1.4116130453030296e-06,
3055
+ "loss": 0.502,
3056
+ "step": 508
3057
+ },
3058
+ {
3059
+ "epoch": 2.51,
3060
+ "learning_rate": 1.3844591860619382e-06,
3061
+ "loss": 0.5341,
3062
+ "step": 509
3063
+ },
3064
+ {
3065
+ "epoch": 2.51,
3066
+ "learning_rate": 1.3575496008186307e-06,
3067
+ "loss": 0.5126,
3068
+ "step": 510
3069
+ },
3070
+ {
3071
+ "epoch": 2.52,
3072
+ "learning_rate": 1.330885052532981e-06,
3073
+ "loss": 0.477,
3074
+ "step": 511
3075
+ },
3076
+ {
3077
+ "epoch": 2.52,
3078
+ "learning_rate": 1.3044662972174005e-06,
3079
+ "loss": 0.4794,
3080
+ "step": 512
3081
+ },
3082
+ {
3083
+ "epoch": 2.53,
3084
+ "learning_rate": 1.2782940839154113e-06,
3085
+ "loss": 0.4699,
3086
+ "step": 513
3087
+ },
3088
+ {
3089
+ "epoch": 2.53,
3090
+ "learning_rate": 1.2523691546803872e-06,
3091
+ "loss": 0.4729,
3092
+ "step": 514
3093
+ },
3094
+ {
3095
+ "epoch": 2.54,
3096
+ "learning_rate": 1.2266922445545348e-06,
3097
+ "loss": 0.5759,
3098
+ "step": 515
3099
+ },
3100
+ {
3101
+ "epoch": 2.54,
3102
+ "learning_rate": 1.201264081548038e-06,
3103
+ "loss": 0.4449,
3104
+ "step": 516
3105
+ },
3106
+ {
3107
+ "epoch": 2.55,
3108
+ "learning_rate": 1.176085386618434e-06,
3109
+ "loss": 0.5104,
3110
+ "step": 517
3111
+ },
3112
+ {
3113
+ "epoch": 2.55,
3114
+ "learning_rate": 1.151156873650151e-06,
3115
+ "loss": 0.4581,
3116
+ "step": 518
3117
+ },
3118
+ {
3119
+ "epoch": 2.56,
3120
+ "learning_rate": 1.1264792494342858e-06,
3121
+ "loss": 0.4846,
3122
+ "step": 519
3123
+ },
3124
+ {
3125
+ "epoch": 2.56,
3126
+ "learning_rate": 1.1020532136485517e-06,
3127
+ "loss": 0.4682,
3128
+ "step": 520
3129
+ },
3130
+ {
3131
+ "epoch": 2.57,
3132
+ "learning_rate": 1.0778794588374542e-06,
3133
+ "loss": 0.5084,
3134
+ "step": 521
3135
+ },
3136
+ {
3137
+ "epoch": 2.57,
3138
+ "learning_rate": 1.0539586703926396e-06,
3139
+ "loss": 0.5208,
3140
+ "step": 522
3141
+ },
3142
+ {
3143
+ "epoch": 2.58,
3144
+ "learning_rate": 1.0302915265334722e-06,
3145
+ "loss": 0.485,
3146
+ "step": 523
3147
+ },
3148
+ {
3149
+ "epoch": 2.58,
3150
+ "learning_rate": 1.0068786982878087e-06,
3151
+ "loss": 0.5098,
3152
+ "step": 524
3153
+ },
3154
+ {
3155
+ "epoch": 2.59,
3156
+ "learning_rate": 9.837208494729567e-07,
3157
+ "loss": 0.4871,
3158
+ "step": 525
3159
+ },
3160
+ {
3161
+ "epoch": 2.59,
3162
+ "learning_rate": 9.608186366768746e-07,
3163
+ "loss": 0.5075,
3164
+ "step": 526
3165
+ },
3166
+ {
3167
+ "epoch": 2.6,
3168
+ "learning_rate": 9.381727092395365e-07,
3169
+ "loss": 0.5208,
3170
+ "step": 527
3171
+ },
3172
+ {
3173
+ "epoch": 2.6,
3174
+ "learning_rate": 9.157837092345334e-07,
3175
+ "loss": 0.4933,
3176
+ "step": 528
3177
+ },
3178
+ {
3179
+ "epoch": 2.61,
3180
+ "learning_rate": 8.936522714508678e-07,
3181
+ "loss": 0.5161,
3182
+ "step": 529
3183
+ },
3184
+ {
3185
+ "epoch": 2.61,
3186
+ "learning_rate": 8.71779023374949e-07,
3187
+ "loss": 0.4978,
3188
+ "step": 530
3189
+ },
3190
+ {
3191
+ "epoch": 2.62,
3192
+ "learning_rate": 8.501645851728091e-07,
3193
+ "loss": 0.547,
3194
+ "step": 531
3195
+ },
3196
+ {
3197
+ "epoch": 2.62,
3198
+ "learning_rate": 8.28809569672514e-07,
3199
+ "loss": 0.5379,
3200
+ "step": 532
3201
+ },
3202
+ {
3203
+ "epoch": 2.62,
3204
+ "learning_rate": 8.077145823467924e-07,
3205
+ "loss": 0.4738,
3206
+ "step": 533
3207
+ },
3208
+ {
3209
+ "epoch": 2.63,
3210
+ "learning_rate": 7.868802212958704e-07,
3211
+ "loss": 0.4614,
3212
+ "step": 534
3213
+ },
3214
+ {
3215
+ "epoch": 2.63,
3216
+ "learning_rate": 7.663070772305081e-07,
3217
+ "loss": 0.5242,
3218
+ "step": 535
3219
+ },
3220
+ {
3221
+ "epoch": 2.64,
3222
+ "learning_rate": 7.459957334552526e-07,
3223
+ "loss": 0.5406,
3224
+ "step": 536
3225
+ },
3226
+ {
3227
+ "epoch": 2.64,
3228
+ "learning_rate": 7.259467658519026e-07,
3229
+ "loss": 0.456,
3230
+ "step": 537
3231
+ },
3232
+ {
3233
+ "epoch": 2.65,
3234
+ "learning_rate": 7.061607428631823e-07,
3235
+ "loss": 0.518,
3236
+ "step": 538
3237
+ },
3238
+ {
3239
+ "epoch": 2.65,
3240
+ "learning_rate": 6.866382254766158e-07,
3241
+ "loss": 0.4643,
3242
+ "step": 539
3243
+ },
3244
+ {
3245
+ "epoch": 2.66,
3246
+ "learning_rate": 6.673797672086335e-07,
3247
+ "loss": 0.5025,
3248
+ "step": 540
3249
+ },
3250
+ {
3251
+ "epoch": 2.66,
3252
+ "learning_rate": 6.483859140888648e-07,
3253
+ "loss": 0.5074,
3254
+ "step": 541
3255
+ },
3256
+ {
3257
+ "epoch": 2.67,
3258
+ "learning_rate": 6.296572046446725e-07,
3259
+ "loss": 0.5339,
3260
+ "step": 542
3261
+ },
3262
+ {
3263
+ "epoch": 2.67,
3264
+ "learning_rate": 6.111941698858681e-07,
3265
+ "loss": 0.463,
3266
+ "step": 543
3267
+ },
3268
+ {
3269
+ "epoch": 2.68,
3270
+ "learning_rate": 5.929973332896677e-07,
3271
+ "loss": 0.5048,
3272
+ "step": 544
3273
+ },
3274
+ {
3275
+ "epoch": 2.68,
3276
+ "learning_rate": 5.750672107858435e-07,
3277
+ "loss": 0.4865,
3278
+ "step": 545
3279
+ },
3280
+ {
3281
+ "epoch": 2.69,
3282
+ "learning_rate": 5.574043107421023e-07,
3283
+ "loss": 0.507,
3284
+ "step": 546
3285
+ },
3286
+ {
3287
+ "epoch": 2.69,
3288
+ "learning_rate": 5.400091339496638e-07,
3289
+ "loss": 0.4942,
3290
+ "step": 547
3291
+ },
3292
+ {
3293
+ "epoch": 2.7,
3294
+ "learning_rate": 5.228821736090684e-07,
3295
+ "loss": 0.5347,
3296
+ "step": 548
3297
+ },
3298
+ {
3299
+ "epoch": 2.7,
3300
+ "learning_rate": 5.060239153161872e-07,
3301
+ "loss": 0.5171,
3302
+ "step": 549
3303
+ },
3304
+ {
3305
+ "epoch": 2.71,
3306
+ "learning_rate": 4.894348370484648e-07,
3307
+ "loss": 0.4647,
3308
+ "step": 550
3309
+ },
3310
+ {
3311
+ "epoch": 2.71,
3312
+ "learning_rate": 4.731154091513546e-07,
3313
+ "loss": 0.4951,
3314
+ "step": 551
3315
+ },
3316
+ {
3317
+ "epoch": 2.72,
3318
+ "learning_rate": 4.570660943249927e-07,
3319
+ "loss": 0.475,
3320
+ "step": 552
3321
+ },
3322
+ {
3323
+ "epoch": 2.72,
3324
+ "learning_rate": 4.412873476110702e-07,
3325
+ "loss": 0.5263,
3326
+ "step": 553
3327
+ },
3328
+ {
3329
+ "epoch": 2.73,
3330
+ "learning_rate": 4.2577961637994544e-07,
3331
+ "loss": 0.5165,
3332
+ "step": 554
3333
+ },
3334
+ {
3335
+ "epoch": 2.73,
3336
+ "learning_rate": 4.1054334031794373e-07,
3337
+ "loss": 0.5298,
3338
+ "step": 555
3339
+ },
3340
+ {
3341
+ "epoch": 2.74,
3342
+ "learning_rate": 3.955789514149022e-07,
3343
+ "loss": 0.4882,
3344
+ "step": 556
3345
+ },
3346
+ {
3347
+ "epoch": 2.74,
3348
+ "learning_rate": 3.808868739519167e-07,
3349
+ "loss": 0.5237,
3350
+ "step": 557
3351
+ },
3352
+ {
3353
+ "epoch": 2.75,
3354
+ "learning_rate": 3.6646752448931345e-07,
3355
+ "loss": 0.4993,
3356
+ "step": 558
3357
+ },
3358
+ {
3359
+ "epoch": 2.75,
3360
+ "learning_rate": 3.5232131185484075e-07,
3361
+ "loss": 0.4955,
3362
+ "step": 559
3363
+ },
3364
+ {
3365
+ "epoch": 2.76,
3366
+ "learning_rate": 3.3844863713207276e-07,
3367
+ "loss": 0.5372,
3368
+ "step": 560
3369
+ },
3370
+ {
3371
+ "epoch": 2.76,
3372
+ "learning_rate": 3.2484989364904295e-07,
3373
+ "loss": 0.4537,
3374
+ "step": 561
3375
+ },
3376
+ {
3377
+ "epoch": 2.77,
3378
+ "learning_rate": 3.115254669670864e-07,
3379
+ "loss": 0.4886,
3380
+ "step": 562
3381
+ },
3382
+ {
3383
+ "epoch": 2.77,
3384
+ "learning_rate": 2.984757348699152e-07,
3385
+ "loss": 0.4615,
3386
+ "step": 563
3387
+ },
3388
+ {
3389
+ "epoch": 2.78,
3390
+ "learning_rate": 2.857010673529015e-07,
3391
+ "loss": 0.483,
3392
+ "step": 564
3393
+ },
3394
+ {
3395
+ "epoch": 2.78,
3396
+ "learning_rate": 2.7320182661258687e-07,
3397
+ "loss": 0.4831,
3398
+ "step": 565
3399
+ },
3400
+ {
3401
+ "epoch": 2.79,
3402
+ "learning_rate": 2.6097836703641856e-07,
3403
+ "loss": 0.5143,
3404
+ "step": 566
3405
+ },
3406
+ {
3407
+ "epoch": 2.79,
3408
+ "learning_rate": 2.4903103519269724e-07,
3409
+ "loss": 0.5071,
3410
+ "step": 567
3411
+ },
3412
+ {
3413
+ "epoch": 2.8,
3414
+ "learning_rate": 2.3736016982075172e-07,
3415
+ "loss": 0.471,
3416
+ "step": 568
3417
+ },
3418
+ {
3419
+ "epoch": 2.8,
3420
+ "learning_rate": 2.2596610182133328e-07,
3421
+ "loss": 0.5003,
3422
+ "step": 569
3423
+ },
3424
+ {
3425
+ "epoch": 2.81,
3426
+ "learning_rate": 2.1484915424723973e-07,
3427
+ "loss": 0.5013,
3428
+ "step": 570
3429
+ },
3430
+ {
3431
+ "epoch": 2.81,
3432
+ "learning_rate": 2.0400964229414732e-07,
3433
+ "loss": 0.4693,
3434
+ "step": 571
3435
+ },
3436
+ {
3437
+ "epoch": 2.82,
3438
+ "learning_rate": 1.9344787329168002e-07,
3439
+ "loss": 0.4621,
3440
+ "step": 572
3441
+ },
3442
+ {
3443
+ "epoch": 2.82,
3444
+ "learning_rate": 1.831641466946954e-07,
3445
+ "loss": 0.4769,
3446
+ "step": 573
3447
+ },
3448
+ {
3449
+ "epoch": 2.83,
3450
+ "learning_rate": 1.731587540747903e-07,
3451
+ "loss": 0.4769,
3452
+ "step": 574
3453
+ },
3454
+ {
3455
+ "epoch": 2.83,
3456
+ "learning_rate": 1.6343197911203978e-07,
3457
+ "loss": 0.5124,
3458
+ "step": 575
3459
+ },
3460
+ {
3461
+ "epoch": 2.84,
3462
+ "learning_rate": 1.5398409758695e-07,
3463
+ "loss": 0.4797,
3464
+ "step": 576
3465
+ },
3466
+ {
3467
+ "epoch": 2.84,
3468
+ "learning_rate": 1.448153773726402e-07,
3469
+ "loss": 0.5224,
3470
+ "step": 577
3471
+ },
3472
+ {
3473
+ "epoch": 2.85,
3474
+ "learning_rate": 1.3592607842724648e-07,
3475
+ "loss": 0.458,
3476
+ "step": 578
3477
+ },
3478
+ {
3479
+ "epoch": 2.85,
3480
+ "learning_rate": 1.2731645278655448e-07,
3481
+ "loss": 0.5218,
3482
+ "step": 579
3483
+ },
3484
+ {
3485
+ "epoch": 2.86,
3486
+ "learning_rate": 1.1898674455685045e-07,
3487
+ "loss": 0.4615,
3488
+ "step": 580
3489
+ },
3490
+ {
3491
+ "epoch": 2.86,
3492
+ "learning_rate": 1.109371899080025e-07,
3493
+ "loss": 0.4976,
3494
+ "step": 581
3495
+ },
3496
+ {
3497
+ "epoch": 2.87,
3498
+ "learning_rate": 1.0316801706676038e-07,
3499
+ "loss": 0.4539,
3500
+ "step": 582
3501
+ },
3502
+ {
3503
+ "epoch": 2.87,
3504
+ "learning_rate": 9.56794463102917e-08,
3505
+ "loss": 0.5036,
3506
+ "step": 583
3507
+ },
3508
+ {
3509
+ "epoch": 2.88,
3510
+ "learning_rate": 8.847168995992916e-08,
3511
+ "loss": 0.5054,
3512
+ "step": 584
3513
+ },
3514
+ {
3515
+ "epoch": 2.88,
3516
+ "learning_rate": 8.154495237515436e-08,
3517
+ "loss": 0.4569,
3518
+ "step": 585
3519
+ },
3520
+ {
3521
+ "epoch": 2.89,
3522
+ "learning_rate": 7.489942994780452e-08,
3523
+ "loss": 0.5083,
3524
+ "step": 586
3525
+ },
3526
+ {
3527
+ "epoch": 2.89,
3528
+ "learning_rate": 6.853531109650147e-08,
3529
+ "loss": 0.4996,
3530
+ "step": 587
3531
+ },
3532
+ {
3533
+ "epoch": 2.9,
3534
+ "learning_rate": 6.245277626131142e-08,
3535
+ "loss": 0.4822,
3536
+ "step": 588
3537
+ },
3538
+ {
3539
+ "epoch": 2.9,
3540
+ "learning_rate": 5.665199789862907e-08,
3541
+ "loss": 0.5149,
3542
+ "step": 589
3543
+ },
3544
+ {
3545
+ "epoch": 2.91,
3546
+ "learning_rate": 5.113314047628493e-08,
3547
+ "loss": 0.5673,
3548
+ "step": 590
3549
+ },
3550
+ {
3551
+ "epoch": 2.91,
3552
+ "learning_rate": 4.589636046888779e-08,
3553
+ "loss": 0.5373,
3554
+ "step": 591
3555
+ },
3556
+ {
3557
+ "epoch": 2.92,
3558
+ "learning_rate": 4.094180635338396e-08,
3559
+ "loss": 0.4939,
3560
+ "step": 592
3561
+ },
3562
+ {
3563
+ "epoch": 2.92,
3564
+ "learning_rate": 3.626961860484723e-08,
3565
+ "loss": 0.4377,
3566
+ "step": 593
3567
+ },
3568
+ {
3569
+ "epoch": 2.92,
3570
+ "learning_rate": 3.187992969249876e-08,
3571
+ "loss": 0.4914,
3572
+ "step": 594
3573
+ },
3574
+ {
3575
+ "epoch": 2.93,
3576
+ "learning_rate": 2.7772864075950036e-08,
3577
+ "loss": 0.4969,
3578
+ "step": 595
3579
+ },
3580
+ {
3581
+ "epoch": 2.93,
3582
+ "learning_rate": 2.3948538201672423e-08,
3583
+ "loss": 0.5389,
3584
+ "step": 596
3585
+ },
3586
+ {
3587
+ "epoch": 2.94,
3588
+ "learning_rate": 2.040706049970087e-08,
3589
+ "loss": 0.5015,
3590
+ "step": 597
3591
+ },
3592
+ {
3593
+ "epoch": 2.94,
3594
+ "learning_rate": 1.7148531380550836e-08,
3595
+ "loss": 0.4968,
3596
+ "step": 598
3597
+ },
3598
+ {
3599
+ "epoch": 2.95,
3600
+ "learning_rate": 1.4173043232380557e-08,
3601
+ "loss": 0.5145,
3602
+ "step": 599
3603
+ },
3604
+ {
3605
+ "epoch": 2.95,
3606
+ "learning_rate": 1.1480680418365364e-08,
3607
+ "loss": 0.4948,
3608
+ "step": 600
3609
+ },
3610
+ {
3611
+ "epoch": 2.96,
3612
+ "learning_rate": 9.071519274308494e-09,
3613
+ "loss": 0.4561,
3614
+ "step": 601
3615
+ },
3616
+ {
3617
+ "epoch": 2.96,
3618
+ "learning_rate": 6.945628106477254e-09,
3619
+ "loss": 0.5233,
3620
+ "step": 602
3621
+ },
3622
+ {
3623
+ "epoch": 2.97,
3624
+ "learning_rate": 5.1030671896623585e-09,
3625
+ "loss": 0.5257,
3626
+ "step": 603
3627
+ },
3628
+ {
3629
+ "epoch": 2.97,
3630
+ "learning_rate": 3.5438887654737355e-09,
3631
+ "loss": 0.5416,
3632
+ "step": 604
3633
+ },
3634
+ {
3635
+ "epoch": 2.98,
3636
+ "learning_rate": 2.268137040859486e-09,
3637
+ "loss": 0.4912,
3638
+ "step": 605
3639
+ },
3640
+ {
3641
+ "epoch": 2.98,
3642
+ "learning_rate": 1.275848186845785e-09,
3643
+ "loss": 0.5545,
3644
+ "step": 606
3645
+ },
3646
+ {
3647
+ "epoch": 2.99,
3648
+ "learning_rate": 5.670503375188041e-10,
3649
+ "loss": 0.4912,
3650
+ "step": 607
3651
+ },
3652
+ {
3653
+ "epoch": 2.99,
3654
+ "learning_rate": 1.4176358922535216e-10,
3655
+ "loss": 0.4833,
3656
+ "step": 608
3657
+ },
3658
+ {
3659
+ "epoch": 3.0,
3660
+ "learning_rate": 0.0,
3661
+ "loss": 0.5261,
3662
+ "step": 609
3663
+ },
3664
+ {
3665
+ "epoch": 3.0,
3666
+ "step": 609,
3667
+ "total_flos": 1.474360073298903e+17,
3668
+ "train_loss": 0.781049705148722,
3669
+ "train_runtime": 11681.9145,
3670
+ "train_samples_per_second": 13.354,
3671
+ "train_steps_per_second": 0.052
3672
+ }
3673
+ ],
3674
+ "max_steps": 609,
3675
+ "num_train_epochs": 3,
3676
+ "total_flos": 1.474360073298903e+17,
3677
+ "trial_name": null,
3678
+ "trial_params": null
3679
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02f8c3ba14e3c48c05f76880975d7385c878b0e5a0863e352c82f331150d2bd4
3
+ size 3707