Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 291.67 +/- 16.67
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb03ccf6440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb03ccf64d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb03ccf6560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb03ccf65f0>", "_build": "<function ActorCriticPolicy._build at 0x7fb03ccf6680>", "forward": "<function ActorCriticPolicy.forward at 0x7fb03ccf6710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb03ccf67a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb03ccf6830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb03ccf68c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb03ccf6950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb03ccf69e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb03cd3e990>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651767973.995333, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaN2Lx76Ja6z10PtfdMOLBnlhQ7IApsNAAAgD8AAIA/AO47vUhjnLroDYo4ynOJMzNiurrVPJ+3AACAPwAAgD/TIVw+08M/P9i3nDz8VxC/0lLcPmVqtb0AAAAAAAAAALNN0r3PX30+yUYrPoMAvr4DJz+94otwPQAAAAAAAAAAGglcvm2lWT7dWr0+O9fDvoRbCr7YiXg+AAAAAAAAAABAxoO9aM6bvLnSQz0Ea788AaJ9PeB2uDwAAIA/AACAP2bY67zcMVG8+H6rPP6ZHzyGDbA9t+IHvQAAgD8AAIA/M58evXsilroLnHKyqZt6MG9MCDpIOgkzAACAPwAAgD9m0nU89qRtusJIyj25h+M4SFIxul7/3DcAAIA/AACAPzOnxDvDjyS8eJkqu5aGerxJK6A9VPibPgAAgD8AAIA/s95gvQrcN7tFX2w9XZ6jPOQvNTxpEoy9AACAPwAAgD8ttV0+69ubPmd6p75OROq+P1KfPS8MG74AAAAAAAAAADNXEb7uhdk9gBq3PrSUsL4SlrS8iaiCPQAAAAAAAAAAmqoKvQP+oT9u1ZW+aWg4v9X827zKk8u9AAAAAAAAAACtYDw+rDt5P+60uD532Ry/ZAvLPmYyCT4AAAAAAAAAAI2l+L0ZDQM+8oAaPsJvn74A2Vi9lpQPPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIl/+QfvuUcECUhpRSlIwBbJRLu4wBdJRHQLH9PgwXZXd1fZQoaAZoCWgPQwgLfEW3XixxQJSGlFKUaBVLy2gWR0Cx/VOYtxuLdX2UKGgGaAloD0MIldi1vd1jcUCUhpRSlGgVTZ0BaBZHQLH9coGIKtx1fZQoaAZoCWgPQwivRKD6hzhxQJSGlFKUaBVL6GgWR0Cx/ZO6NEPUdX2UKGgGaAloD0MI7ZqQ1piSckCUhpRSlGgVS9NoFkdAsf2qbUgB93V9lChoBmgJaA9DCJlGk4sxRnFAlIaUUpRoFUu2aBZHQLH9sEXcgyN1fZQoaAZoCWgPQwg82GK3z+RuQJSGlFKUaBVLxWgWR0Cx/eAbVBlddX2UKGgGaAloD0MI9SoyOqBzcECUhpRSlGgVS81oFkdAsf3ghje9BnV9lChoBmgJaA9DCJ3VAnvMxHJAlIaUUpRoFUvcaBZHQLH94lsxfv51fZQoaAZoCWgPQwjni70XH0NwQJSGlFKUaBVL5mgWR0Cx/ffzBhx6dX2UKGgGaAloD0MI3nahuc53ckCUhpRSlGgVS7NoFkdAsf4HrgOz6nV9lChoBmgJaA9DCEYnS623FnNAlIaUUpRoFUvZaBZHQLH+Z9Zid8R1fZQoaAZoCWgPQwgHQx1WOP1wQJSGlFKUaBVLxWgWR0Cx/odxIatLdX2UKGgGaAloD0MI6KG2DWNqc0CUhpRSlGgVS8FoFkdAsf6vCtRvWHV9lChoBmgJaA9DCIP4wI7/EXFAlIaUUpRoFUvLaBZHQLH+w4N7SiN1fZQoaAZoCWgPQwhXB0DcFUlxQJSGlFKUaBVL2GgWR0Cx/sWM4tHydX2UKGgGaAloD0MIFCNL5lidckCUhpRSlGgVS9hoFkdAsf7vIYFaCHV9lChoBmgJaA9DCK65o/8lMnJAlIaUUpRoFUu2aBZHQLH+7oRZlnR1fZQoaAZoCWgPQwgJG55eKWBxQJSGlFKUaBVLzmgWR0Cx/vjB68g7dX2UKGgGaAloD0MISz/h7NZmbkCUhpRSlGgVS8loFkdAsf8lkSVW0nV9lChoBmgJaA9DCGWJzjILJnBAlIaUUpRoFUu9aBZHQLH/RH4XXRR1fZQoaAZoCWgPQwizeLEwRBByQJSGlFKUaBVLxWgWR0Cx/1MohIOIdX2UKGgGaAloD0MIzuDvFzNKbkCUhpRSlGgVS7NoFkdAsf9c+t8uz3V9lChoBmgJaA9DCEfH1ciu9nFAlIaUUpRoFU0gAmgWR0Cx/2Of7JnydX2UKGgGaAloD0MISDKrd/glcUCUhpRSlGgVS+doFkdAsf9kp4KQaXV9lChoBmgJaA9DCMgm+RG/8HNAlIaUUpRoFUvMaBZHQLH/Ynmq5sl1fZQoaAZoCWgPQwilwAKYMulwQJSGlFKUaBVLzmgWR0Cx/3nPmgandX2UKGgGaAloD0MIRBZp4p3bckCUhpRSlGgVS9NoFkdAsgeYYrJ8v3V9lChoBmgJaA9DCGx8JvvnCnFAlIaUUpRoFUu/aBZHQLIHto6jnFJ1fZQoaAZoCWgPQwgW+mAZWzNzQJSGlFKUaBVL1GgWR0CyB7foJRfndX2UKGgGaAloD0MIN1FLcyuScECUhpRSlGgVS8BoFkdAsgfKIO6NEXV9lChoBmgJaA9DCNHN/kD5wnBAlIaUUpRoFUvRaBZHQLIH6SG8Emp1fZQoaAZoCWgPQwifxyjPPKVwQJSGlFKUaBVLz2gWR0CyCBYP9UCJdX2UKGgGaAloD0MIxedOsD/dc0CUhpRSlGgVS9doFkdAsggbpX6qKnV9lChoBmgJaA9DCBgLQ+S0aXNAlIaUUpRoFUvaaBZHQLIIINCqp991fZQoaAZoCWgPQwiSW5Nuy0JwQJSGlFKUaBVLyWgWR0CyCDrO7g89dX2UKGgGaAloD0MIEkw1s5ZycUCUhpRSlGgVS7NoFkdAsghOD9OymnV9lChoBmgJaA9DCK/OMSB7MHJAlIaUUpRoFUvDaBZHQLIIY8a4tpV1fZQoaAZoCWgPQwgVb2Qe+eVxQJSGlFKUaBVL12gWR0CyCH9M9KVZdX2UKGgGaAloD0MIyY6NQDyqcECUhpRSlGgVS+xoFkdAsgiaQuEmIHV9lChoBmgJaA9DCPCmW3YIA3FAlIaUUpRoFUvfaBZHQLIIoa+N96V1fZQoaAZoCWgPQwjHgVfL3d5yQJSGlFKUaBVL32gWR0CyCKAnH/96dX2UKGgGaAloD0MIescpOlKvc0CUhpRSlGgVS7poFkdAsgkJIDoyK3V9lChoBmgJaA9DCLjn+dMG8nJAlIaUUpRoFUvIaBZHQLIJOX668QJ1fZQoaAZoCWgPQwhzTBb3X4tzQJSGlFKUaBVL8mgWR0CyCVWc4HX3dX2UKGgGaAloD0MIAd9t3jgWc0CUhpRSlGgVS8ZoFkdAsglZzxPO6nV9lChoBmgJaA9DCGAjSRCurXNAlIaUUpRoFUvpaBZHQLIJZLnLaEl1fZQoaAZoCWgPQwi0BYTWQ8VwQJSGlFKUaBVL1GgWR0CyCacrd30PdX2UKGgGaAloD0MI4X7AA4Occ0CUhpRSlGgVS8xoFkdAsgmi6K+BYnV9lChoBmgJaA9DCKj8a3mlz3JAlIaUUpRoFUvaaBZHQLIJuWSlnAZ1fZQoaAZoCWgPQwh/MsaH2fNxQJSGlFKUaBVLy2gWR0CyCbuiSJTEdX2UKGgGaAloD0MIdAexMwWjckCUhpRSlGgVS7toFkdAsgnjyOJcgXV9lChoBmgJaA9DCGCSyhSzqHBAlIaUUpRoFUvZaBZHQLIJ54L1EmZ1fZQoaAZoCWgPQwgrE36pn4NwQJSGlFKUaBVL2GgWR0CyCfq4Ds+ndX2UKGgGaAloD0MIyAiocASJbkCUhpRSlGgVS8JoFkdAsgoGg+Qlr3V9lChoBmgJaA9DCD3S4LZ23HBAlIaUUpRoFUvQaBZHQLIKJQJokAx1fZQoaAZoCWgPQwhVF/Ayg2JwQJSGlFKUaBVLzGgWR0CyCoyGN70GdX2UKGgGaAloD0MIlIRE2oZOcECUhpRSlGgVS8loFkdAsgq7xb0OE3V9lChoBmgJaA9DCNO/JJVpznBAlIaUUpRoFUvGaBZHQLIK1rT6SDB1fZQoaAZoCWgPQwieJF0z+f5xQJSGlFKUaBVL1WgWR0CyCvDiwSrYdX2UKGgGaAloD0MIlQ7W//ktckCUhpRSlGgVTT8BaBZHQLILAtWuHN51fZQoaAZoCWgPQwiSeHk6F0RxQJSGlFKUaBVLvWgWR0CyCw4FA3UAdX2UKGgGaAloD0MIA5mdRa/2cUCUhpRSlGgVS+FoFkdAsgsYnjQzDXV9lChoBmgJaA9DCNjw9ErZ9G9AlIaUUpRoFUvFaBZHQLILIkhib2F1fZQoaAZoCWgPQwhC7bd24ntwQJSGlFKUaBVLvGgWR0CyCySXyAhCdX2UKGgGaAloD0MIBd1e0lgxcUCUhpRSlGgVS7hoFkdAsgtFIvrWy3V9lChoBmgJaA9DCMWM8PbgCXRAlIaUUpRoFUvFaBZHQLILYGrS3LF1fZQoaAZoCWgPQwh3L/fJURNxQJSGlFKUaBVL4mgWR0CyC7OmWMS9dX2UKGgGaAloD0MIl+E/3UCXbkCUhpRSlGgVS8ZoFkdAsguuL4vexnV9lChoBmgJaA9DCN9uSQ6YG3NAlIaUUpRoFUvcaBZHQLILuDgqEvl1fZQoaAZoCWgPQwial8Puu7puQJSGlFKUaBVNEgFoFkdAsgvL48EFGHV9lChoBmgJaA9DCKsgBro2enNAlIaUUpRoFUvGaBZHQLIME0XgtOF1fZQoaAZoCWgPQwgnMnOBi+tyQJSGlFKUaBVLtWgWR0CyDDVsYVIqdX2UKGgGaAloD0MIDaX2Ilp8cUCUhpRSlGgVS8VoFkdAsgw7hJiAlXV9lChoBmgJaA9DCBjt8UI62HFAlIaUUpRoFUumaBZHQLIMXp22Xsx1fZQoaAZoCWgPQwjGbworFUVzQJSGlFKUaBVL0WgWR0CyDIHBDXvqdX2UKGgGaAloD0MIuarsu2JJckCUhpRSlGgVS65oFkdAsgySrZJ04nV9lChoBmgJaA9DCHu7JTlglm5AlIaUUpRoFUvFaBZHQLIMkNS619h1fZQoaAZoCWgPQwjr4jYaQLxuQJSGlFKUaBVLwGgWR0CyDJMCcPOIdX2UKGgGaAloD0MIv56vWW7UcECUhpRSlGgVS+FoFkdAsgy8dXDFZXV9lChoBmgJaA9DCEax3NJqv3FAlIaUUpRoFUvzaBZHQLIM0+I/JNl1fZQoaAZoCWgPQwjMJsCwPLByQJSGlFKUaBVLrmgWR0CyDPm6PKdQdX2UKGgGaAloD0MIXFZhM0BPc0CUhpRSlGgVS95oFkdAsg0GfthNNHV9lChoBmgJaA9DCMFu2LZoZnBAlIaUUpRoFUu8aBZHQLINCVBD5TJ1fZQoaAZoCWgPQwjYKOs3E1tyQJSGlFKUaBVL22gWR0CyDVwP/aQFdX2UKGgGaAloD0MIzT0kfO/mcECUhpRSlGgVTVYDaBZHQLINZGcFyJd1fZQoaAZoCWgPQwg9t9CVSK1zQJSGlFKUaBVL7WgWR0CyDWg+Y+jedX2UKGgGaAloD0MIVklkH+SMckCUhpRSlGgVS8poFkdAsg2EeDFqBXV9lChoBmgJaA9DCC/7dad7NXNAlIaUUpRoFUu4aBZHQLINrwcYIjZ1fZQoaAZoCWgPQwjTvySVqXZxQJSGlFKUaBVL0GgWR0CyDbFvES/TdX2UKGgGaAloD0MIj3Ba8GJIckCUhpRSlGgVS9BoFkdAsg225mRNh3V9lChoBmgJaA9DCIEmwoZnXHFAlIaUUpRoFUuyaBZHQLIN0vES/TN1fZQoaAZoCWgPQwiJRKFl3cNxQJSGlFKUaBVLtmgWR0CyDdwqRU3odX2UKGgGaAloD0MIOuY8Yx9PcECUhpRSlGgVS79oFkdAsg3bFvQ4THV9lChoBmgJaA9DCF01zxE5jXFAlIaUUpRoFUutaBZHQLIN71loUSJ1fZQoaAZoCWgPQwjO+/84IbJyQJSGlFKUaBVL1WgWR0CyDg7HAAQydX2UKGgGaAloD0MIbsK9Mq9UcECUhpRSlGgVS7ZoFkdAsg4UiC8OC3V9lChoBmgJaA9DCNUl4xjJZW9AlIaUUpRoFUvBaBZHQLIOWzCk43p1fZQoaAZoCWgPQwhN+KV+XpxyQJSGlFKUaBVLyWgWR0CyDm7tNSIhdX2UKGgGaAloD0MIW2H6XsMFc0CUhpRSlGgVS+5oFkdAsg6l8F6iTXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 984, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:075b2897015b2de6afc5b7593cca95b61696f7333fc5bebbdf57d951692a266c
|
3 |
+
size 143989
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb03ccf6440>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb03ccf64d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb03ccf6560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb03ccf65f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb03ccf6680>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb03ccf6710>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb03ccf67a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb03ccf6830>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb03ccf68c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb03ccf6950>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb03ccf69e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb03cd3e990>"
|
20 |
+
},
|
21 |
+
"verbose": 0,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 2015232,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651767973.995333,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaN2Lx76Ja6z10PtfdMOLBnlhQ7IApsNAAAgD8AAIA/AO47vUhjnLroDYo4ynOJMzNiurrVPJ+3AACAPwAAgD/TIVw+08M/P9i3nDz8VxC/0lLcPmVqtb0AAAAAAAAAALNN0r3PX30+yUYrPoMAvr4DJz+94otwPQAAAAAAAAAAGglcvm2lWT7dWr0+O9fDvoRbCr7YiXg+AAAAAAAAAABAxoO9aM6bvLnSQz0Ea788AaJ9PeB2uDwAAIA/AACAP2bY67zcMVG8+H6rPP6ZHzyGDbA9t+IHvQAAgD8AAIA/M58evXsilroLnHKyqZt6MG9MCDpIOgkzAACAPwAAgD9m0nU89qRtusJIyj25h+M4SFIxul7/3DcAAIA/AACAPzOnxDvDjyS8eJkqu5aGerxJK6A9VPibPgAAgD8AAIA/s95gvQrcN7tFX2w9XZ6jPOQvNTxpEoy9AACAPwAAgD8ttV0+69ubPmd6p75OROq+P1KfPS8MG74AAAAAAAAAADNXEb7uhdk9gBq3PrSUsL4SlrS8iaiCPQAAAAAAAAAAmqoKvQP+oT9u1ZW+aWg4v9X827zKk8u9AAAAAAAAAACtYDw+rDt5P+60uD532Ry/ZAvLPmYyCT4AAAAAAAAAAI2l+L0ZDQM+8oAaPsJvn74A2Vi9lpQPPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIl/+QfvuUcECUhpRSlIwBbJRLu4wBdJRHQLH9PgwXZXd1fZQoaAZoCWgPQwgLfEW3XixxQJSGlFKUaBVLy2gWR0Cx/VOYtxuLdX2UKGgGaAloD0MIldi1vd1jcUCUhpRSlGgVTZ0BaBZHQLH9coGIKtx1fZQoaAZoCWgPQwivRKD6hzhxQJSGlFKUaBVL6GgWR0Cx/ZO6NEPUdX2UKGgGaAloD0MI7ZqQ1piSckCUhpRSlGgVS9NoFkdAsf2qbUgB93V9lChoBmgJaA9DCJlGk4sxRnFAlIaUUpRoFUu2aBZHQLH9sEXcgyN1fZQoaAZoCWgPQwg82GK3z+RuQJSGlFKUaBVLxWgWR0Cx/eAbVBlddX2UKGgGaAloD0MI9SoyOqBzcECUhpRSlGgVS81oFkdAsf3ghje9BnV9lChoBmgJaA9DCJ3VAnvMxHJAlIaUUpRoFUvcaBZHQLH94lsxfv51fZQoaAZoCWgPQwjni70XH0NwQJSGlFKUaBVL5mgWR0Cx/ffzBhx6dX2UKGgGaAloD0MI3nahuc53ckCUhpRSlGgVS7NoFkdAsf4HrgOz6nV9lChoBmgJaA9DCEYnS623FnNAlIaUUpRoFUvZaBZHQLH+Z9Zid8R1fZQoaAZoCWgPQwgHQx1WOP1wQJSGlFKUaBVLxWgWR0Cx/odxIatLdX2UKGgGaAloD0MI6KG2DWNqc0CUhpRSlGgVS8FoFkdAsf6vCtRvWHV9lChoBmgJaA9DCIP4wI7/EXFAlIaUUpRoFUvLaBZHQLH+w4N7SiN1fZQoaAZoCWgPQwhXB0DcFUlxQJSGlFKUaBVL2GgWR0Cx/sWM4tHydX2UKGgGaAloD0MIFCNL5lidckCUhpRSlGgVS9hoFkdAsf7vIYFaCHV9lChoBmgJaA9DCK65o/8lMnJAlIaUUpRoFUu2aBZHQLH+7oRZlnR1fZQoaAZoCWgPQwgJG55eKWBxQJSGlFKUaBVLzmgWR0Cx/vjB68g7dX2UKGgGaAloD0MISz/h7NZmbkCUhpRSlGgVS8loFkdAsf8lkSVW0nV9lChoBmgJaA9DCGWJzjILJnBAlIaUUpRoFUu9aBZHQLH/RH4XXRR1fZQoaAZoCWgPQwizeLEwRBByQJSGlFKUaBVLxWgWR0Cx/1MohIOIdX2UKGgGaAloD0MIzuDvFzNKbkCUhpRSlGgVS7NoFkdAsf9c+t8uz3V9lChoBmgJaA9DCEfH1ciu9nFAlIaUUpRoFU0gAmgWR0Cx/2Of7JnydX2UKGgGaAloD0MISDKrd/glcUCUhpRSlGgVS+doFkdAsf9kp4KQaXV9lChoBmgJaA9DCMgm+RG/8HNAlIaUUpRoFUvMaBZHQLH/Ynmq5sl1fZQoaAZoCWgPQwilwAKYMulwQJSGlFKUaBVLzmgWR0Cx/3nPmgandX2UKGgGaAloD0MIRBZp4p3bckCUhpRSlGgVS9NoFkdAsgeYYrJ8v3V9lChoBmgJaA9DCGx8JvvnCnFAlIaUUpRoFUu/aBZHQLIHto6jnFJ1fZQoaAZoCWgPQwgW+mAZWzNzQJSGlFKUaBVL1GgWR0CyB7foJRfndX2UKGgGaAloD0MIN1FLcyuScECUhpRSlGgVS8BoFkdAsgfKIO6NEXV9lChoBmgJaA9DCNHN/kD5wnBAlIaUUpRoFUvRaBZHQLIH6SG8Emp1fZQoaAZoCWgPQwifxyjPPKVwQJSGlFKUaBVLz2gWR0CyCBYP9UCJdX2UKGgGaAloD0MIxedOsD/dc0CUhpRSlGgVS9doFkdAsggbpX6qKnV9lChoBmgJaA9DCBgLQ+S0aXNAlIaUUpRoFUvaaBZHQLIIINCqp991fZQoaAZoCWgPQwiSW5Nuy0JwQJSGlFKUaBVLyWgWR0CyCDrO7g89dX2UKGgGaAloD0MIEkw1s5ZycUCUhpRSlGgVS7NoFkdAsghOD9OymnV9lChoBmgJaA9DCK/OMSB7MHJAlIaUUpRoFUvDaBZHQLIIY8a4tpV1fZQoaAZoCWgPQwgVb2Qe+eVxQJSGlFKUaBVL12gWR0CyCH9M9KVZdX2UKGgGaAloD0MIyY6NQDyqcECUhpRSlGgVS+xoFkdAsgiaQuEmIHV9lChoBmgJaA9DCPCmW3YIA3FAlIaUUpRoFUvfaBZHQLIIoa+N96V1fZQoaAZoCWgPQwjHgVfL3d5yQJSGlFKUaBVL32gWR0CyCKAnH/96dX2UKGgGaAloD0MIescpOlKvc0CUhpRSlGgVS7poFkdAsgkJIDoyK3V9lChoBmgJaA9DCLjn+dMG8nJAlIaUUpRoFUvIaBZHQLIJOX668QJ1fZQoaAZoCWgPQwhzTBb3X4tzQJSGlFKUaBVL8mgWR0CyCVWc4HX3dX2UKGgGaAloD0MIAd9t3jgWc0CUhpRSlGgVS8ZoFkdAsglZzxPO6nV9lChoBmgJaA9DCGAjSRCurXNAlIaUUpRoFUvpaBZHQLIJZLnLaEl1fZQoaAZoCWgPQwi0BYTWQ8VwQJSGlFKUaBVL1GgWR0CyCacrd30PdX2UKGgGaAloD0MI4X7AA4Occ0CUhpRSlGgVS8xoFkdAsgmi6K+BYnV9lChoBmgJaA9DCKj8a3mlz3JAlIaUUpRoFUvaaBZHQLIJuWSlnAZ1fZQoaAZoCWgPQwh/MsaH2fNxQJSGlFKUaBVLy2gWR0CyCbuiSJTEdX2UKGgGaAloD0MIdAexMwWjckCUhpRSlGgVS7toFkdAsgnjyOJcgXV9lChoBmgJaA9DCGCSyhSzqHBAlIaUUpRoFUvZaBZHQLIJ54L1EmZ1fZQoaAZoCWgPQwgrE36pn4NwQJSGlFKUaBVL2GgWR0CyCfq4Ds+ndX2UKGgGaAloD0MIyAiocASJbkCUhpRSlGgVS8JoFkdAsgoGg+Qlr3V9lChoBmgJaA9DCD3S4LZ23HBAlIaUUpRoFUvQaBZHQLIKJQJokAx1fZQoaAZoCWgPQwhVF/Ayg2JwQJSGlFKUaBVLzGgWR0CyCoyGN70GdX2UKGgGaAloD0MIlIRE2oZOcECUhpRSlGgVS8loFkdAsgq7xb0OE3V9lChoBmgJaA9DCNO/JJVpznBAlIaUUpRoFUvGaBZHQLIK1rT6SDB1fZQoaAZoCWgPQwieJF0z+f5xQJSGlFKUaBVL1WgWR0CyCvDiwSrYdX2UKGgGaAloD0MIlQ7W//ktckCUhpRSlGgVTT8BaBZHQLILAtWuHN51fZQoaAZoCWgPQwiSeHk6F0RxQJSGlFKUaBVLvWgWR0CyCw4FA3UAdX2UKGgGaAloD0MIA5mdRa/2cUCUhpRSlGgVS+FoFkdAsgsYnjQzDXV9lChoBmgJaA9DCNjw9ErZ9G9AlIaUUpRoFUvFaBZHQLILIkhib2F1fZQoaAZoCWgPQwhC7bd24ntwQJSGlFKUaBVLvGgWR0CyCySXyAhCdX2UKGgGaAloD0MIBd1e0lgxcUCUhpRSlGgVS7hoFkdAsgtFIvrWy3V9lChoBmgJaA9DCMWM8PbgCXRAlIaUUpRoFUvFaBZHQLILYGrS3LF1fZQoaAZoCWgPQwh3L/fJURNxQJSGlFKUaBVL4mgWR0CyC7OmWMS9dX2UKGgGaAloD0MIl+E/3UCXbkCUhpRSlGgVS8ZoFkdAsguuL4vexnV9lChoBmgJaA9DCN9uSQ6YG3NAlIaUUpRoFUvcaBZHQLILuDgqEvl1fZQoaAZoCWgPQwial8Puu7puQJSGlFKUaBVNEgFoFkdAsgvL48EFGHV9lChoBmgJaA9DCKsgBro2enNAlIaUUpRoFUvGaBZHQLIME0XgtOF1fZQoaAZoCWgPQwgnMnOBi+tyQJSGlFKUaBVLtWgWR0CyDDVsYVIqdX2UKGgGaAloD0MIDaX2Ilp8cUCUhpRSlGgVS8VoFkdAsgw7hJiAlXV9lChoBmgJaA9DCBjt8UI62HFAlIaUUpRoFUumaBZHQLIMXp22Xsx1fZQoaAZoCWgPQwjGbworFUVzQJSGlFKUaBVL0WgWR0CyDIHBDXvqdX2UKGgGaAloD0MIuarsu2JJckCUhpRSlGgVS65oFkdAsgySrZJ04nV9lChoBmgJaA9DCHu7JTlglm5AlIaUUpRoFUvFaBZHQLIMkNS619h1fZQoaAZoCWgPQwjr4jYaQLxuQJSGlFKUaBVLwGgWR0CyDJMCcPOIdX2UKGgGaAloD0MIv56vWW7UcECUhpRSlGgVS+FoFkdAsgy8dXDFZXV9lChoBmgJaA9DCEax3NJqv3FAlIaUUpRoFUvzaBZHQLIM0+I/JNl1fZQoaAZoCWgPQwjMJsCwPLByQJSGlFKUaBVLrmgWR0CyDPm6PKdQdX2UKGgGaAloD0MIXFZhM0BPc0CUhpRSlGgVS95oFkdAsg0GfthNNHV9lChoBmgJaA9DCMFu2LZoZnBAlIaUUpRoFUu8aBZHQLINCVBD5TJ1fZQoaAZoCWgPQwjYKOs3E1tyQJSGlFKUaBVL22gWR0CyDVwP/aQFdX2UKGgGaAloD0MIzT0kfO/mcECUhpRSlGgVTVYDaBZHQLINZGcFyJd1fZQoaAZoCWgPQwg9t9CVSK1zQJSGlFKUaBVL7WgWR0CyDWg+Y+jedX2UKGgGaAloD0MIVklkH+SMckCUhpRSlGgVS8poFkdAsg2EeDFqBXV9lChoBmgJaA9DCC/7dad7NXNAlIaUUpRoFUu4aBZHQLINrwcYIjZ1fZQoaAZoCWgPQwjTvySVqXZxQJSGlFKUaBVL0GgWR0CyDbFvES/TdX2UKGgGaAloD0MIj3Ba8GJIckCUhpRSlGgVS9BoFkdAsg225mRNh3V9lChoBmgJaA9DCIEmwoZnXHFAlIaUUpRoFUuyaBZHQLIN0vES/TN1fZQoaAZoCWgPQwiJRKFl3cNxQJSGlFKUaBVLtmgWR0CyDdwqRU3odX2UKGgGaAloD0MIOuY8Yx9PcECUhpRSlGgVS79oFkdAsg3bFvQ4THV9lChoBmgJaA9DCF01zxE5jXFAlIaUUpRoFUutaBZHQLIN71loUSJ1fZQoaAZoCWgPQwjO+/84IbJyQJSGlFKUaBVL1WgWR0CyDg7HAAQydX2UKGgGaAloD0MIbsK9Mq9UcECUhpRSlGgVS7ZoFkdAsg4UiC8OC3V9lChoBmgJaA9DCNUl4xjJZW9AlIaUUpRoFUvBaBZHQLIOWzCk43p1fZQoaAZoCWgPQwhN+KV+XpxyQJSGlFKUaBVLyWgWR0CyDm7tNSIhdX2UKGgGaAloD0MIW2H6XsMFc0CUhpRSlGgVS+5oFkdAsg6l8F6iTXVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 984,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da6f4e86a84ae113f9ac0e40528bf0cbe6539cd4f445c5e68eeefdb31fc054ab
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f7804abddfb5f98bad42bb434eb10505e06db672c5b42e81f194780d1e819a8
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5b7c76a194a2499c7525de5141594e80f3945d4eeca6bdf8a79cb55ef763ecf
|
3 |
+
size 187496
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 291.673145755897, "std_reward": 16.670290372506035, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T17:00:46.771000"}
|