File size: 25,874 Bytes
a9a7525 aec30a9 a9a7525 aec30a9 a9a7525 19c0773 8f0017d a9a7525 aec30a9 a9a7525 aec30a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
# TinyLLama-4.6M-v0.0-F16.gguf - GGUF Internal File Dump
- Endian: LITTLE endian
## Key Value Metadata Store
There are 40 key-value pairs in this file
| POS | TYPE | Count | Key | Value |
|----:|:----------|------:|:---------------------------------------|:---------------------------------------------------------------------------------|
| 1 | UINT32 | 1 | GGUF.version | 3 |
| 2 | UINT64 | 1 | GGUF.tensor_count | 75 |
| 3 | UINT64 | 1 | GGUF.kv_count | 37 |
| 4 | STRING | 1 | general.architecture | `llama` |
| 5 | STRING | 1 | general.type | `model` |
| 6 | STRING | 1 | general.name | `TinyLLama` |
| 7 | STRING | 1 | general.author | `Maykeye` |
| 8 | STRING | 1 | general.version | `v0.0` |
| 9 | STRING | 1 | general.description | `This gguf is ported from a fir`...`M but using Llama architecture` |
| 10 | STRING | 1 | general.quantized_by | `Mofosyne` |
| 11 | STRING | 1 | general.size_label | `4.6M` |
| 12 | STRING | 1 | general.license | `apache-2.0` |
| 13 | STRING | 1 | general.license.name | `Apache License Version 2.0, January 2004` |
| 14 | STRING | 1 | general.license.link | `https://huggingface.co/dataset`...`ob/main/markdown/apache-2.0.md` |
| 15 | STRING | 1 | general.url | `https://huggingface.co/mofosyne/TinyLLama-v0-llamafile` |
| 16 | STRING | 1 | general.repo_url | `https://huggingface.co/mofosyne/TinyLLama-v0-llamafile` |
| 17 | STRING | 1 | general.source.url | `https://huggingface.co/Maykeye/TinyLLama-v0` |
| 18 | STRING | 1 | general.source.repo_url | `https://huggingface.co/Maykeye/TinyLLama-v0` |
| 19 | [STRING] | 5 | general.tags | [ `text generation`, `transformer`, `llama`, `tiny`, `tiny model` ] |
| 20 | [STRING] | 1 | general.languages | [ `en` ] |
| 21 | [STRING] | 2 | general.datasets | [ `https://hugging`...`-GPT4-train.txt`, `https://hugging`...`-GPT4-valid.txt` ] |
| 22 | UINT32 | 1 | llama.block_count | 8 |
| 23 | UINT32 | 1 | llama.context_length | 2048 |
| 24 | UINT32 | 1 | llama.embedding_length | 64 |
| 25 | UINT32 | 1 | llama.feed_forward_length | 256 |
| 26 | UINT32 | 1 | llama.attention.head_count | 16 |
| 27 | FLOAT32 | 1 | llama.attention.layer_norm_rms_epsilon | 1e-06 |
| 28 | UINT32 | 1 | general.file_type | 1 |
| 29 | UINT32 | 1 | llama.vocab_size | 32000 |
| 30 | UINT32 | 1 | llama.rope.dimension_count | 4 |
| 31 | STRING | 1 | tokenizer.ggml.model | `llama` |
| 32 | STRING | 1 | tokenizer.ggml.pre | `default` |
| 33 | [STRING] | 32000 | tokenizer.ggml.tokens | [ `<unk>`, `<s>`, `</s>`, `<0x00>`, `<0x01>`, ... ] |
| 34 | [FLOAT32] | 32000 | tokenizer.ggml.scores | [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... ] |
| 35 | [INT32] | 32000 | tokenizer.ggml.token_type | [ 2, 3, 3, 6, 6, 6, 6, ... ] |
| 36 | UINT32 | 1 | tokenizer.ggml.bos_token_id | 1 |
| 37 | UINT32 | 1 | tokenizer.ggml.eos_token_id | 2 |
| 38 | UINT32 | 1 | tokenizer.ggml.unknown_token_id | 0 |
| 39 | UINT32 | 1 | tokenizer.ggml.padding_token_id | 0 |
| 40 | UINT32 | 1 | general.quantization_version | 2 |
## Tensors Overview ~5M Elements
Total number of elements in all tensors: 4621376 Elements
- [Base Tensor Group - ~4M Elements](#base)
- [Block 0 Tensor Group - ~66K Elements](#blk_0)
- [Block 1 Tensor Group - ~66K Elements](#blk_1)
- [Block 2 Tensor Group - ~66K Elements](#blk_2)
- [Block 3 Tensor Group - ~66K Elements](#blk_3)
- [Block 4 Tensor Group - ~66K Elements](#blk_4)
- [Block 5 Tensor Group - ~66K Elements](#blk_5)
- [Block 6 Tensor Group - ~66K Elements](#blk_6)
- [Block 7 Tensor Group - ~66K Elements](#blk_7)
### Tensor Data Offset
This table contains the offset and data segment relative to start of file
| T_ID | Tensor Layer Name | Data Offset (B) | Data Size (B) |
|-----:|:-------------------------|-----------------:|-----------------:|
| 0 | output.weight | 0xba8e0 | 0x3e8000 |
| 1 | token_embd.weight | 0x4a28e0 | 0x3e8000 |
| 2 | blk.0.attn_norm.weight | 0x88a8e0 | 0x100 |
| 3 | blk.0.ffn_down.weight | 0x88a9e0 | 0x8000 |
| 4 | blk.0.ffn_gate.weight | 0x8929e0 | 0x8000 |
| 5 | blk.0.ffn_up.weight | 0x89a9e0 | 0x8000 |
| 6 | blk.0.ffn_norm.weight | 0x8a29e0 | 0x100 |
| 7 | blk.0.attn_k.weight | 0x8a2ae0 | 0x2000 |
| 8 | blk.0.attn_output.weight | 0x8a4ae0 | 0x2000 |
| 9 | blk.0.attn_q.weight | 0x8a6ae0 | 0x2000 |
| 10 | blk.0.attn_v.weight | 0x8a8ae0 | 0x2000 |
| 11 | blk.1.attn_norm.weight | 0x8aaae0 | 0x100 |
| 12 | blk.1.ffn_down.weight | 0x8aabe0 | 0x8000 |
| 13 | blk.1.ffn_gate.weight | 0x8b2be0 | 0x8000 |
| 14 | blk.1.ffn_up.weight | 0x8babe0 | 0x8000 |
| 15 | blk.1.ffn_norm.weight | 0x8c2be0 | 0x100 |
| 16 | blk.1.attn_k.weight | 0x8c2ce0 | 0x2000 |
| 17 | blk.1.attn_output.weight | 0x8c4ce0 | 0x2000 |
| 18 | blk.1.attn_q.weight | 0x8c6ce0 | 0x2000 |
| 19 | blk.1.attn_v.weight | 0x8c8ce0 | 0x2000 |
| 20 | blk.2.attn_norm.weight | 0x8cace0 | 0x100 |
| 21 | blk.2.ffn_down.weight | 0x8cade0 | 0x8000 |
| 22 | blk.2.ffn_gate.weight | 0x8d2de0 | 0x8000 |
| 23 | blk.2.ffn_up.weight | 0x8dade0 | 0x8000 |
| 24 | blk.2.ffn_norm.weight | 0x8e2de0 | 0x100 |
| 25 | blk.2.attn_k.weight | 0x8e2ee0 | 0x2000 |
| 26 | blk.2.attn_output.weight | 0x8e4ee0 | 0x2000 |
| 27 | blk.2.attn_q.weight | 0x8e6ee0 | 0x2000 |
| 28 | blk.2.attn_v.weight | 0x8e8ee0 | 0x2000 |
| 29 | blk.3.attn_norm.weight | 0x8eaee0 | 0x100 |
| 30 | blk.3.ffn_down.weight | 0x8eafe0 | 0x8000 |
| 31 | blk.3.ffn_gate.weight | 0x8f2fe0 | 0x8000 |
| 32 | blk.3.ffn_up.weight | 0x8fafe0 | 0x8000 |
| 33 | blk.3.ffn_norm.weight | 0x902fe0 | 0x100 |
| 34 | blk.3.attn_k.weight | 0x9030e0 | 0x2000 |
| 35 | blk.3.attn_output.weight | 0x9050e0 | 0x2000 |
| 36 | blk.3.attn_q.weight | 0x9070e0 | 0x2000 |
| 37 | blk.3.attn_v.weight | 0x9090e0 | 0x2000 |
| 38 | blk.4.attn_norm.weight | 0x90b0e0 | 0x100 |
| 39 | blk.4.ffn_down.weight | 0x90b1e0 | 0x8000 |
| 40 | blk.4.ffn_gate.weight | 0x9131e0 | 0x8000 |
| 41 | blk.4.ffn_up.weight | 0x91b1e0 | 0x8000 |
| 42 | blk.4.ffn_norm.weight | 0x9231e0 | 0x100 |
| 43 | blk.4.attn_k.weight | 0x9232e0 | 0x2000 |
| 44 | blk.4.attn_output.weight | 0x9252e0 | 0x2000 |
| 45 | blk.4.attn_q.weight | 0x9272e0 | 0x2000 |
| 46 | blk.4.attn_v.weight | 0x9292e0 | 0x2000 |
| 47 | blk.5.attn_norm.weight | 0x92b2e0 | 0x100 |
| 48 | blk.5.ffn_down.weight | 0x92b3e0 | 0x8000 |
| 49 | blk.5.ffn_gate.weight | 0x9333e0 | 0x8000 |
| 50 | blk.5.ffn_up.weight | 0x93b3e0 | 0x8000 |
| 51 | blk.5.ffn_norm.weight | 0x9433e0 | 0x100 |
| 52 | blk.5.attn_k.weight | 0x9434e0 | 0x2000 |
| 53 | blk.5.attn_output.weight | 0x9454e0 | 0x2000 |
| 54 | blk.5.attn_q.weight | 0x9474e0 | 0x2000 |
| 55 | blk.5.attn_v.weight | 0x9494e0 | 0x2000 |
| 56 | blk.6.attn_norm.weight | 0x94b4e0 | 0x100 |
| 57 | blk.6.ffn_down.weight | 0x94b5e0 | 0x8000 |
| 58 | blk.6.ffn_gate.weight | 0x9535e0 | 0x8000 |
| 59 | blk.6.ffn_up.weight | 0x95b5e0 | 0x8000 |
| 60 | blk.6.ffn_norm.weight | 0x9635e0 | 0x100 |
| 61 | blk.6.attn_k.weight | 0x9636e0 | 0x2000 |
| 62 | blk.6.attn_output.weight | 0x9656e0 | 0x2000 |
| 63 | blk.6.attn_q.weight | 0x9676e0 | 0x2000 |
| 64 | blk.6.attn_v.weight | 0x9696e0 | 0x2000 |
| 65 | blk.7.attn_norm.weight | 0x96b6e0 | 0x100 |
| 66 | blk.7.ffn_down.weight | 0x96b7e0 | 0x8000 |
| 67 | blk.7.ffn_gate.weight | 0x9737e0 | 0x8000 |
| 68 | blk.7.ffn_up.weight | 0x97b7e0 | 0x8000 |
| 69 | blk.7.ffn_norm.weight | 0x9837e0 | 0x100 |
| 70 | blk.7.attn_k.weight | 0x9838e0 | 0x2000 |
| 71 | blk.7.attn_output.weight | 0x9858e0 | 0x2000 |
| 72 | blk.7.attn_q.weight | 0x9878e0 | 0x2000 |
| 73 | blk.7.attn_v.weight | 0x9898e0 | 0x2000 |
| 74 | output_norm.weight | 0x98b8e0 | 0x100 |
### <a name="base">Base Tensor Group : ~4M Elements</a>
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|-----:|:-------------------|:---------------------------------|:--------------|:-------------------|:-----|
| 0 | output.weight | Output (W) | (~2M) 2048000 | 64 x 32000 x 1 x 1 | F16 |
| 1 | token_embd.weight | Token Embedding (W) | (~2M) 2048000 | 64 x 32000 x 1 x 1 | F16 |
| 74 | output_norm.weight | Output Normalization (W) | ( 64) 64 | 64 x 1 x 1 x 1 | F32 |
- Total elements in base: ( ~4M) 4096064
- Percentage of total elements: 88.63%
### <a name="blk_0">Block 0 Tensor Group : ~66K Elements</a>
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|-----:|:-------------------------|:-----------------------------------------------|:-------------|:------------------|:-----|
| 2 | blk.0.attn_norm.weight | Block 0 Attention Normalization (W) | ( 64) 64 | 64 x 1 x 1 x 1 | F32 |
| 3 | blk.0.ffn_down.weight | Block 0 Feed-Forward Network "Down" (W) | (~16K) 16384 | 256 x 64 x 1 x 1 | F16 |
| 4 | blk.0.ffn_gate.weight | Block 0 Feed-Forward Network "Gate" (W) | (~16K) 16384 | 64 x 256 x 1 x 1 | F16 |
| 5 | blk.0.ffn_up.weight | Block 0 Feed-Forward Network "Up" (W) | (~16K) 16384 | 64 x 256 x 1 x 1 | F16 |
| 6 | blk.0.ffn_norm.weight | Block 0 Feed-Forward Network Normalization (W) | ( 64) 64 | 64 x 1 x 1 x 1 | F32 |
| 7 | blk.0.attn_k.weight | Block 0 Attention Key (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 8 | blk.0.attn_output.weight | Block 0 Attention Output (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 9 | blk.0.attn_q.weight | Block 0 Attention Query (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 10 | blk.0.attn_v.weight | Block 0 Attention Value (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
- Total elements in blk.0: (~66K) 65664
- Percentage of total elements: 1.42%
### <a name="blk_1">Block 1 Tensor Group : ~66K Elements</a>
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|-----:|:-------------------------|:-----------------------------------------------|:-------------|:------------------|:-----|
| 11 | blk.1.attn_norm.weight | Block 1 Attention Normalization (W) | ( 64) 64 | 64 x 1 x 1 x 1 | F32 |
| 12 | blk.1.ffn_down.weight | Block 1 Feed-Forward Network "Down" (W) | (~16K) 16384 | 256 x 64 x 1 x 1 | F16 |
| 13 | blk.1.ffn_gate.weight | Block 1 Feed-Forward Network "Gate" (W) | (~16K) 16384 | 64 x 256 x 1 x 1 | F16 |
| 14 | blk.1.ffn_up.weight | Block 1 Feed-Forward Network "Up" (W) | (~16K) 16384 | 64 x 256 x 1 x 1 | F16 |
| 15 | blk.1.ffn_norm.weight | Block 1 Feed-Forward Network Normalization (W) | ( 64) 64 | 64 x 1 x 1 x 1 | F32 |
| 16 | blk.1.attn_k.weight | Block 1 Attention Key (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 17 | blk.1.attn_output.weight | Block 1 Attention Output (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 18 | blk.1.attn_q.weight | Block 1 Attention Query (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 19 | blk.1.attn_v.weight | Block 1 Attention Value (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
- Total elements in blk.1: (~66K) 65664
- Percentage of total elements: 1.42%
### <a name="blk_2">Block 2 Tensor Group : ~66K Elements</a>
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|-----:|:-------------------------|:-----------------------------------------------|:-------------|:------------------|:-----|
| 20 | blk.2.attn_norm.weight | Block 2 Attention Normalization (W) | ( 64) 64 | 64 x 1 x 1 x 1 | F32 |
| 21 | blk.2.ffn_down.weight | Block 2 Feed-Forward Network "Down" (W) | (~16K) 16384 | 256 x 64 x 1 x 1 | F16 |
| 22 | blk.2.ffn_gate.weight | Block 2 Feed-Forward Network "Gate" (W) | (~16K) 16384 | 64 x 256 x 1 x 1 | F16 |
| 23 | blk.2.ffn_up.weight | Block 2 Feed-Forward Network "Up" (W) | (~16K) 16384 | 64 x 256 x 1 x 1 | F16 |
| 24 | blk.2.ffn_norm.weight | Block 2 Feed-Forward Network Normalization (W) | ( 64) 64 | 64 x 1 x 1 x 1 | F32 |
| 25 | blk.2.attn_k.weight | Block 2 Attention Key (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 26 | blk.2.attn_output.weight | Block 2 Attention Output (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 27 | blk.2.attn_q.weight | Block 2 Attention Query (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 28 | blk.2.attn_v.weight | Block 2 Attention Value (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
- Total elements in blk.2: (~66K) 65664
- Percentage of total elements: 1.42%
### <a name="blk_3">Block 3 Tensor Group : ~66K Elements</a>
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|-----:|:-------------------------|:-----------------------------------------------|:-------------|:------------------|:-----|
| 29 | blk.3.attn_norm.weight | Block 3 Attention Normalization (W) | ( 64) 64 | 64 x 1 x 1 x 1 | F32 |
| 30 | blk.3.ffn_down.weight | Block 3 Feed-Forward Network "Down" (W) | (~16K) 16384 | 256 x 64 x 1 x 1 | F16 |
| 31 | blk.3.ffn_gate.weight | Block 3 Feed-Forward Network "Gate" (W) | (~16K) 16384 | 64 x 256 x 1 x 1 | F16 |
| 32 | blk.3.ffn_up.weight | Block 3 Feed-Forward Network "Up" (W) | (~16K) 16384 | 64 x 256 x 1 x 1 | F16 |
| 33 | blk.3.ffn_norm.weight | Block 3 Feed-Forward Network Normalization (W) | ( 64) 64 | 64 x 1 x 1 x 1 | F32 |
| 34 | blk.3.attn_k.weight | Block 3 Attention Key (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 35 | blk.3.attn_output.weight | Block 3 Attention Output (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 36 | blk.3.attn_q.weight | Block 3 Attention Query (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 37 | blk.3.attn_v.weight | Block 3 Attention Value (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
- Total elements in blk.3: (~66K) 65664
- Percentage of total elements: 1.42%
### <a name="blk_4">Block 4 Tensor Group : ~66K Elements</a>
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|-----:|:-------------------------|:-----------------------------------------------|:-------------|:------------------|:-----|
| 38 | blk.4.attn_norm.weight | Block 4 Attention Normalization (W) | ( 64) 64 | 64 x 1 x 1 x 1 | F32 |
| 39 | blk.4.ffn_down.weight | Block 4 Feed-Forward Network "Down" (W) | (~16K) 16384 | 256 x 64 x 1 x 1 | F16 |
| 40 | blk.4.ffn_gate.weight | Block 4 Feed-Forward Network "Gate" (W) | (~16K) 16384 | 64 x 256 x 1 x 1 | F16 |
| 41 | blk.4.ffn_up.weight | Block 4 Feed-Forward Network "Up" (W) | (~16K) 16384 | 64 x 256 x 1 x 1 | F16 |
| 42 | blk.4.ffn_norm.weight | Block 4 Feed-Forward Network Normalization (W) | ( 64) 64 | 64 x 1 x 1 x 1 | F32 |
| 43 | blk.4.attn_k.weight | Block 4 Attention Key (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 44 | blk.4.attn_output.weight | Block 4 Attention Output (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 45 | blk.4.attn_q.weight | Block 4 Attention Query (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 46 | blk.4.attn_v.weight | Block 4 Attention Value (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
- Total elements in blk.4: (~66K) 65664
- Percentage of total elements: 1.42%
### <a name="blk_5">Block 5 Tensor Group : ~66K Elements</a>
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|-----:|:-------------------------|:-----------------------------------------------|:-------------|:------------------|:-----|
| 47 | blk.5.attn_norm.weight | Block 5 Attention Normalization (W) | ( 64) 64 | 64 x 1 x 1 x 1 | F32 |
| 48 | blk.5.ffn_down.weight | Block 5 Feed-Forward Network "Down" (W) | (~16K) 16384 | 256 x 64 x 1 x 1 | F16 |
| 49 | blk.5.ffn_gate.weight | Block 5 Feed-Forward Network "Gate" (W) | (~16K) 16384 | 64 x 256 x 1 x 1 | F16 |
| 50 | blk.5.ffn_up.weight | Block 5 Feed-Forward Network "Up" (W) | (~16K) 16384 | 64 x 256 x 1 x 1 | F16 |
| 51 | blk.5.ffn_norm.weight | Block 5 Feed-Forward Network Normalization (W) | ( 64) 64 | 64 x 1 x 1 x 1 | F32 |
| 52 | blk.5.attn_k.weight | Block 5 Attention Key (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 53 | blk.5.attn_output.weight | Block 5 Attention Output (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 54 | blk.5.attn_q.weight | Block 5 Attention Query (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 55 | blk.5.attn_v.weight | Block 5 Attention Value (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
- Total elements in blk.5: (~66K) 65664
- Percentage of total elements: 1.42%
### <a name="blk_6">Block 6 Tensor Group : ~66K Elements</a>
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|-----:|:-------------------------|:-----------------------------------------------|:-------------|:------------------|:-----|
| 56 | blk.6.attn_norm.weight | Block 6 Attention Normalization (W) | ( 64) 64 | 64 x 1 x 1 x 1 | F32 |
| 57 | blk.6.ffn_down.weight | Block 6 Feed-Forward Network "Down" (W) | (~16K) 16384 | 256 x 64 x 1 x 1 | F16 |
| 58 | blk.6.ffn_gate.weight | Block 6 Feed-Forward Network "Gate" (W) | (~16K) 16384 | 64 x 256 x 1 x 1 | F16 |
| 59 | blk.6.ffn_up.weight | Block 6 Feed-Forward Network "Up" (W) | (~16K) 16384 | 64 x 256 x 1 x 1 | F16 |
| 60 | blk.6.ffn_norm.weight | Block 6 Feed-Forward Network Normalization (W) | ( 64) 64 | 64 x 1 x 1 x 1 | F32 |
| 61 | blk.6.attn_k.weight | Block 6 Attention Key (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 62 | blk.6.attn_output.weight | Block 6 Attention Output (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 63 | blk.6.attn_q.weight | Block 6 Attention Query (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 64 | blk.6.attn_v.weight | Block 6 Attention Value (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
- Total elements in blk.6: (~66K) 65664
- Percentage of total elements: 1.42%
### <a name="blk_7">Block 7 Tensor Group : ~66K Elements</a>
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|-----:|:-------------------------|:-----------------------------------------------|:-------------|:------------------|:-----|
| 65 | blk.7.attn_norm.weight | Block 7 Attention Normalization (W) | ( 64) 64 | 64 x 1 x 1 x 1 | F32 |
| 66 | blk.7.ffn_down.weight | Block 7 Feed-Forward Network "Down" (W) | (~16K) 16384 | 256 x 64 x 1 x 1 | F16 |
| 67 | blk.7.ffn_gate.weight | Block 7 Feed-Forward Network "Gate" (W) | (~16K) 16384 | 64 x 256 x 1 x 1 | F16 |
| 68 | blk.7.ffn_up.weight | Block 7 Feed-Forward Network "Up" (W) | (~16K) 16384 | 64 x 256 x 1 x 1 | F16 |
| 69 | blk.7.ffn_norm.weight | Block 7 Feed-Forward Network Normalization (W) | ( 64) 64 | 64 x 1 x 1 x 1 | F32 |
| 70 | blk.7.attn_k.weight | Block 7 Attention Key (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 71 | blk.7.attn_output.weight | Block 7 Attention Output (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 72 | blk.7.attn_q.weight | Block 7 Attention Query (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
| 73 | blk.7.attn_v.weight | Block 7 Attention Value (W) | ( ~4K) 4096 | 64 x 64 x 1 x 1 | F16 |
- Total elements in blk.7: (~66K) 65664
- Percentage of total elements: 1.42%
|