File size: 3,633 Bytes
b8a6dde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from typing import List, Dict, Any

import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch import Tensor

from tokenizers import Tokenizer

class BilingualDataset(Dataset):
    """
    A Bilingual Dataset that follows the structure of the 'opus_books' dataset.
    """
    def __init__(
        self,
        ds: List[Dict[str, Dict[str,str]]],
        src_tokenizer: Tokenizer,
        tgt_tokenizer: Tokenizer,
        src_lang: str,
        tgt_lang: str,
        src_max_seq_len: int,
        tgt_max_seq_len: int,
    ) -> None:
        super(BilingualDataset, self).__init__()

        self.ds = ds
        self.src_tokenizer = src_tokenizer
        self.tgt_tokenizer = tgt_tokenizer
        self.src_lang = src_lang
        self.tgt_lang = tgt_lang

        self.src_max_seq_len = src_max_seq_len
        self.tgt_max_seq_len = tgt_max_seq_len

        self.sos_token = torch.tensor([src_tokenizer.token_to_id('<sos>')], dtype=torch.int64)
        self.eos_token = torch.tensor([src_tokenizer.token_to_id('<eos>')], dtype=torch.int64)
        self.pad_token = torch.tensor([src_tokenizer.token_to_id('<pad>')], dtype=torch.int64)

    def __len__(self):
        return len(self.ds)
    
    def __getitem__(self, index: int) -> Dict[str, Any]:
        src_tgt_pair = self.ds[index]
        src_text = src_tgt_pair['translation'][self.src_lang]
        tgt_text = src_tgt_pair['translation'][self.tgt_lang]

        encoder_input_tokens = self.src_tokenizer.encode(src_text).ids
        decoder_input_tokens = self.tgt_tokenizer.encode(tgt_text).ids

        encoder_num_padding = self.src_max_seq_len - len(encoder_input_tokens) - 2 # <sos> + <eos>
        decoder_num_padding = self.tgt_max_seq_len - len(decoder_input_tokens) - 1 # <sos>

        # <sos> + source_text + <eos> + <pad> = encoder_input
        encoder_input = torch.cat(
            [
                self.sos_token,
                torch.tensor(encoder_input_tokens, dtype=torch.int64),
                self.eos_token,
                torch.tensor([self.pad_token] * encoder_num_padding, dtype=torch.int64)
            ]
        )

        decoder_input_tokens = torch.tensor(decoder_input_tokens, dtype=torch.int64)
        decoder_padding = torch.tensor([self.pad_token] * decoder_num_padding, dtype=torch.int64)
        # <sos> + target_text + <pad> = decoder_input
        decoder_input = torch.cat(
            [
                self.sos_token,
                decoder_input_tokens,
                decoder_padding
            ]
        )
        # target_text + <eos> + <pad> = expected decoder_output (label)
        label = torch.cat(
            [
                decoder_input_tokens,
                self.eos_token,
                decoder_padding
            ]
        )

        assert encoder_input.size(0) == self.src_max_seq_len
        assert decoder_input.size(0) == self.tgt_max_seq_len
        assert label.size(0) == self.tgt_max_seq_len
        
        return {
            'encoder_input': encoder_input, # (seq_len)
            'decoder_input': decoder_input, # (seq_len)
            'encoder_mask': (encoder_input != self.pad_token).unsqueeze(0).unsqueeze(0).int(), # (1, 1, seq_len)
            'decoder_mask': (decoder_input != self.pad_token).unsqueeze(0).unsqueeze(0).int() & causal_mask(decoder_input.size(0)), # (1, seq_len, seq_len)
            'label': label, # (seq_len)
            'src_text': src_text,
            'tgt_text': tgt_text,
        }
    
def causal_mask(size: int) -> Tensor:
    mask = torch.triu(torch.ones(1, size, size), diagonal=1).type(torch.int)
    return mask == 0