from typing import Tuple import torch.nn as nn from torch import Tensor from modules.multi_head_attention import MultiHeadAttention from modules.positionwise_feed_forward import PositionwiseFeedForwardNetwork class EncoderLayer(nn.Module): """ An Encoder layer. Args: """ def __init__( self, d_model: int, num_heads: int, d_ff: int, dropout_p: int, ) -> None: super(EncoderLayer, self).__init__() self.self_attn_prenorm = nn.LayerNorm(d_model) self.self_attn = MultiHeadAttention(d_model=d_model, num_heads=num_heads, dropout_p=dropout_p) self.self_attn_dropout = nn.Dropout(p=dropout_p) self.feed_forward_prenorm = nn.LayerNorm(d_model) self.feed_forward = PositionwiseFeedForwardNetwork(d_model=d_model, d_ff=d_ff, dropout_p=dropout_p) def forward(self, inputs: Tensor, src_mask: Tensor = None) -> Tuple[Tensor, Tensor]: # Normalize -> sublayer -> dropout -> add residual residual = inputs inputs = self.self_attn_prenorm(inputs) outputs, attn = self.self_attn(inputs, inputs, inputs, src_mask) outputs = self.self_attn_dropout(outputs) + residual residual = outputs outputs = self.feed_forward_prenorm(outputs) outputs = self.feed_forward(outputs) outputs += residual return outputs, attn