{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5fe014b140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 4005888, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690289265149518252, "learning_rate": 0.00025, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAABciDuuAam61s5ANUwEnDBJE4E6L8hBtAAAgD8AAIA/TVwYPeFQl7p0WA+8aUaNNimlabodlf21AACAPwAAAADN5o49qYO/PoW1Zb0EbvS+KXeoPUYL7joAAAAAAAAAAMCSUz7wFrg+/tkovpP75L5wBCE+EC+WvQAAAAAAAAAAzUw5PuWboD9WSdI+1dc/v/Ezez71NmU8AAAAAAAAAADNcpc86XxVvMjvZ72nk4A9gH+WPVXprjwAAIA/AACAPwA+Ib2uWZC6Wr0htYth3q8I/ss6DgZhNAAAAAAAAIA/WruEPYptYT5+RIS+DOuhvheKGr00Lam9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV5gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHASBEa2nbaMAWyUS8SMAXSUR0Ctl6qHGjsVdX2UKGgGR0BwMb2kBS1maAdL0GgIR0CtoMWeHzpYdX2UKGgGR0BwNo5uIhyKaAdLxGgIR0CtoNNcnmaIdX2UKGgGR0BxuTRlYlpoaAdLwWgIR0CtoPJHiFTOdX2UKGgGR0ByuyWLP2PDaAdLtGgIR0CtoTfxMFlkdX2UKGgGR0ByToIkZ75VaAdLzWgIR0CtoWmUnogWdX2UKGgGR0Bx1CNYKYzBaAdLy2gIR0CtobEQPI4mdX2UKGgGR0B0I9PHktEoaAdL6mgIR0CtodCO3lS1dX2UKGgGR0Bxv12X9itraAdLtmgIR0CtogEQGwA3dX2UKGgGR0BxyRe2NNrTaAdLzmgIR0CtohuXmeUZdX2UKGgGR0BxjEQ4CIUKaAdLtGgIR0Ctoh6vRqoIdX2UKGgGR0BPyRxDLKV6aAdLkWgIR0Ctop6Zx7zDdX2UKGgGR0ByEh36hxo7aAdL3GgIR0CtoqQtBfKIdX2UKGgGR0BzleQU5+6RaAdL5WgIR0CtouVYp2ECdX2UKGgGR0BkT5Z0Syt3aAdN6ANoCEdAraLzk2gnMXV9lChoBkdAcwKZpSJj2GgHS9NoCEdAraMhWaMJhXV9lChoBkdAcbdxQSBbwGgHS9ZoCEdAraNMyP+4snV9lChoBkdAcoZmj0th/mgHS/xoCEdAraOZGjKxLXV9lChoBkdAcHz6UaAFxGgHS79oCEdAraO63gDRt3V9lChoBkdAcwo43WFvh2gHS85oCEdAraPLWy1NQHV9lChoBkdAcon5LAYYSGgHS8NoCEdAraP2yxA0K3V9lChoBkdAcLo9JBgNPWgHS9BoCEdAraQU4T9KmXV9lChoBkdAcpWnnMdLhGgHS8ZoCEdAraRvRG+bmXV9lChoBkdAcZbGhVU+92gHS+loCEdAraRzTUiIL3V9lChoBkdAc6GbLlmvn2gHS9BoCEdAraT+jASFoXV9lChoBkdAbyqqXF98Z2gHS8RoCEdAraU1OZb6g3V9lChoBkdAcrt3bVSXMWgHS7RoCEdAraU+foRqXXV9lChoBkdAcea0vGp++mgHTQUBaAhHQK2ldZ9NN8F1fZQoaAZHQG/lE9U0eltoB0u8aAhHQK2ltdTHbRF1fZQoaAZHQHL343zcynFoB0vcaAhHQK2l8uCf6Gh1fZQoaAZHQHJ6rMLWqcVoB0vcaAhHQK2mmj0th/l1fZQoaAZHQHETgWi1y/9oB0vNaAhHQK2muUY8+zN1fZQoaAZHQEwFbYbsF+xoB0uGaAhHQK2muW+GoJl1fZQoaAZHQHEAd6cAimloB0vVaAhHQK2m0biIcip1fZQoaAZHQHFkAow22ohoB0vQaAhHQK2nAlBQemx1fZQoaAZHQHAKRrzoUztoB0vAaAhHQK2wWMrEtNB1fZQoaAZHQHFGtGAkLQZoB0vAaAhHQK2xH67dzn11fZQoaAZHQHOnhxcVxjtoB0vKaAhHQK2xNXxvvSd1fZQoaAZHQHEeSsS00FdoB0viaAhHQK2xSDQqqfh1fZQoaAZHQHJye5nUUfxoB0vUaAhHQK2xZDJEH+t1fZQoaAZHQHQfoIOYplVoB0vpaAhHQK2xvxUedTZ1fZQoaAZHQGdSAxBVuJloB03oA2gIR0CtsdnrIHTrdX2UKGgGR0BwDvhky1u0aAdLwWgIR0CtsdypBHCodX2UKGgGR0ByElKdxyXEaAdLz2gIR0Ctsqq5CngpdX2UKGgGR0By8zZdv864aAdLxWgIR0Ctsqrq+rU9dX2UKGgGR0By3usq8UVSaAdLw2gIR0Ctsrf3evZAdX2UKGgGR0BRLzoZAIIGaAdLhWgIR0CtsspR4yGjdX2UKGgGR0Bwvv1xsEaEaAdLx2gIR0CtstcqFyq/dX2UKGgGR0BvooUvf0mMaAdLzGgIR0CtsyxSgoPTdX2UKGgGR0BwnKcmShalaAdLzWgIR0Cts0fOlfqpdX2UKGgGR0BoRxhrnDBNaAdN6ANoCEdArbOUjFAE+3V9lChoBkdAb7iowVTJhmgHS7xoCEdArbPaMHbAUXV9lChoBkdAbvpLOiWVvGgHS8JoCEdArbPiGFi8WnV9lChoBkdAcOOHZK3/gmgHS7doCEdArbPz101ZT3V9lChoBkdAVO33JxNqQGgHS5JoCEdArbQFIK+i8HV9lChoBkdAc5aflIVdomgHS9VoCEdArbQQ55qubXV9lChoBkdAcFrp84Pwu2gHS+NoCEdArbQVRR/EwXV9lChoBkdAUePhZQpF1GgHS31oCEdArbS5BqsU7HV9lChoBkdAc5VfCyhSL2gHS+JoCEdArbTBwCKaX3V9lChoBkdAcEwlenhsImgHS79oCEdArbTl8LKFI3V9lChoBkdAb5jAfuCwr2gHS7doCEdArbTvffoA4nV9lChoBkdAcy/tvGZNPGgHS89oCEdArbT1lwtJ4HV9lChoBkdAbj+oAGSpzmgHS9JoCEdArbUqcXm/33V9lChoBkdAciLQRf4REmgHS7loCEdArbY4HZ9NOHV9lChoBkdActCLqD9OymgHS9hoCEdArbZm7z06HXV9lChoBkdAb15qD9OymmgHS7poCEdArbZ203Ov+3V9lChoBkdAcaRNH6MzdmgHS9doCEdArbaXm1YyPHV9lChoBkdAcuUPO6d1+2gHS9toCEdArbapo4+8oXV9lChoBkdAbyIJNTLntGgHS8xoCEdArbbUZP2wmnV9lChoBkdAcV+hllK9PGgHS9doCEdArcBm51/2CnV9lChoBkdAcedSA6Mir2gHS9ZoCEdArcCWseXAunV9lChoBkdAb2Wogmqo62gHS75oCEdArcCfetSydHV9lChoBkdAcqfuCf6Gg2gHS9ZoCEdArcCouscQy3V9lChoBkdAcBl3kPtlZ2gHS8JoCEdArcC4JXyRS3V9lChoBkdAcZbMFUyYX2gHS/hoCEdArcFM9t/FznV9lChoBkdAcLa9uP3i72gHS8ZoCEdArcIccU/OdHV9lChoBkdAc6Dws5GSZGgHS8hoCEdArcIp7/n4f3V9lChoBkdAcT/1pTMq0GgHS8FoCEdArcI4aFVT73V9lChoBkdAcKmS2phnamgHS9NoCEdArcJL2i+L33V9lChoBkdAcLuOy3Td+GgHS8xoCEdArcL0UO/cnHV9lChoBkdAZojybx3FDWgHTegDaAhHQK3C+0+C9RJ1fZQoaAZHQHBkBi1AqutoB0u/aAhHQK3DnFVDKHR1fZQoaAZHQHK6q+zt1IRoB0vSaAhHQK3DtDYRNAV1fZQoaAZHQHMJKJ2t+1BoB0vNaAhHQK3Dwqslsxh1fZQoaAZHQHMieDzyz5ZoB0vcaAhHQK3D7hTfixV1fZQoaAZHQGiivCdjG1hoB03oA2gIR0Ctw/vb48EFdX2UKGgGR0BxdgrNGEwnaAdL1GgIR0CtxGDJ2dNGdX2UKGgGR0BxyBL0z0pWaAdL3mgIR0CtxHVR1oxpdX2UKGgGR0Bv3O3fAKv3aAdLxmgIR0CtxPJ1zQu3dX2UKGgGR0Bzrdf1HvtuaAdL1GgIR0CtxPSnDR+jdX2UKGgGR0BxEVgF5fMOaAdLu2gIR0CtxRU+1SfldX2UKGgGR0Bw2+0AtFrmaAdLwGgIR0CtxSo7FKkEdX2UKGgGR0Bxz+2oegctaAdL+GgIR0CtxU55zHS4dX2UKGgGR0BztkIkZ75VaAdLzmgIR0CtxajjR2KVdX2UKGgGR0Bzp8bEP1+RaAdL02gIR0CtxciW3Sa3dX2UKGgGR0BN6OHN5dGBaAdLhGgIR0CtxcpBw++udX2UKGgGR0BwRvLyMDOkaAdLxmgIR0CtxjI7FKkEdX2UKGgGR0BvSbd8Aq/eaAdLvmgIR0Ctxkg9eQdTdX2UKGgGR0BxXW+49X9zaAdLwmgIR0CtxmSBTXJ6dX2UKGgGR0Bx+wh6jWTYaAdLzGgIR0CtxpxaX8fndWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4890, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVJgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHIvdWlvL2thbnQvaWZpLWFuc2F0dC11MDcvbW9qdGFiYWsvLmNvbmRhL2VudnMvcHkzMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxyL3Vpby9rYW50L2lmaS1hbnNhdHQtdTA3L21vanRhYmFrLy5jb25kYS9lbnZzL3B5MzExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 8, "lr_schedule": {":type:": "", ":serialized:": "gAWVJgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHIvdWlvL2thbnQvaWZpLWFuc2F0dC11MDcvbW9qdGFiYWsvLmNvbmRhL2VudnMvcHkzMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxyL3Vpby9rYW50L2lmaS1hbnNhdHQtdTA3L21vanRhYmFrLy5jb25kYS9lbnZzL3B5MzExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/MGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-4.18.0-425.19.2.el8_7.x86_64-x86_64-with-glibc2.28 # 1 SMP Fri Mar 17 01:52:38 EDT 2023", "Python": "3.11.4", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}