File size: 19,889 Bytes
509db6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

from typing import TYPE_CHECKING, Any, Callable, Iterable, Sequence

import torch
from monai.config import IgniteInfo
from monai.engines.utils import IterationEvents, default_metric_cmp_fn, default_prepare_batch
from monai.inferers import Inferer, SimpleInferer
from monai.transforms import Transform
from monai.utils import min_version, optional_import
from monai.utils.enums import CommonKeys, GanKeys
from torch.optim.optimizer import Optimizer
from torch.utils.data import DataLoader

if TYPE_CHECKING:
    from ignite.engine import Engine, EventEnum
    from ignite.metrics import Metric
else:
    Engine, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Engine")
    Metric, _ = optional_import("ignite.metrics", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Metric")
    EventEnum, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "EventEnum")
from monai.engines.trainer import SupervisedTrainer, Trainer


class VaeGanTrainer(Trainer):
    """
    Generative adversarial network training based on Goodfellow et al. 2014 https://arxiv.org/abs/1406.266,
    inherits from ``Trainer`` and ``Workflow``.
    Training Loop: for each batch of data size `m`
        1. Generate `m` fakes from random latent codes.
        2. Update discriminator with these fakes and current batch reals, repeated d_train_steps times.
        3. If g_update_latents, generate `m` fakes from new random latent codes.
        4. Update generator with these fakes using discriminator feedback.
    Args:
        device: an object representing the device on which to run.
        max_epochs: the total epoch number for engine to run.
        train_data_loader: Core ignite engines uses `DataLoader` for training loop batchdata.
        g_network: generator (G) network architecture.
        g_optimizer: G optimizer function.
        g_loss_function: G loss function for optimizer.
        d_network: discriminator (D) network architecture.
        d_optimizer: D optimizer function.
        d_loss_function: D loss function for optimizer.
        epoch_length: number of iterations for one epoch, default to `len(train_data_loader)`.
        g_inferer: inference method to execute G model forward. Defaults to ``SimpleInferer()``.
        d_inferer: inference method to execute D model forward. Defaults to ``SimpleInferer()``.
        d_train_steps: number of times to update D with real data minibatch. Defaults to ``1``.
        latent_shape: size of G input latent code. Defaults to ``64``.
        non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously
            with respect to the host. For other cases, this argument has no effect.
        d_prepare_batch: callback function to prepare batchdata for D inferer.
            Defaults to return ``GanKeys.REALS`` in batchdata dict. for more details please refer to:
            https://pytorch.org/ignite/generated/ignite.engine.create_supervised_trainer.html.
        g_prepare_batch: callback function to create batch of latent input for G inferer.
            Defaults to return random latents. for more details please refer to:
            https://pytorch.org/ignite/generated/ignite.engine.create_supervised_trainer.html.
        g_update_latents: Calculate G loss with new latent codes. Defaults to ``True``.
        iteration_update: the callable function for every iteration, expect to accept `engine`
            and `engine.state.batch` as inputs, return data will be stored in `engine.state.output`.
            if not provided, use `self._iteration()` instead. for more details please refer to:
            https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html.
        postprocessing: execute additional transformation for the model output data.
            Typically, several Tensor based transforms composed by `Compose`.
        key_train_metric: compute metric when every iteration completed, and save average value to
            engine.state.metrics when epoch completed. key_train_metric is the main metric to compare and save the
            checkpoint into files.
        additional_metrics: more Ignite metrics that also attach to Ignite Engine.
        metric_cmp_fn: function to compare current key metric with previous best key metric value,
            it must accept 2 args (current_metric, previous_best) and return a bool result: if `True`, will update
            `best_metric` and `best_metric_epoch` with current metric and epoch, default to `greater than`.
        train_handlers: every handler is a set of Ignite Event-Handlers, must have `attach` function, like:
            CheckpointHandler, StatsHandler, etc.
        decollate: whether to decollate the batch-first data to a list of data after model computation,
            recommend `decollate=True` when `postprocessing` uses components from `monai.transforms`.
            default to `True`.
        optim_set_to_none: when calling `optimizer.zero_grad()`, instead of setting to zero, set the grads to None.
            more details: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html.
        to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for
            `device`, `non_blocking`.
        amp_kwargs: dict of the args for `torch.cuda.amp.autocast()` API, for more details:
            https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast.
    """

    def __init__(
        self,
        device: str | torch.device,
        max_epochs: int,
        train_data_loader: DataLoader,
        g_network: torch.nn.Module,
        g_optimizer: Optimizer,
        g_loss_function: Callable,
        d_network: torch.nn.Module,
        d_optimizer: Optimizer,
        d_loss_function: Callable,
        epoch_length: int | None = None,
        g_inferer: Inferer | None = None,
        d_inferer: Inferer | None = None,
        d_train_steps: int = 1,
        latent_shape: int = 64,
        non_blocking: bool = False,
        d_prepare_batch: Callable = default_prepare_batch,
        g_prepare_batch: Callable = default_prepare_batch,
        g_update_latents: bool = True,
        iteration_update: Callable[[Engine, Any], Any] | None = None,
        postprocessing: Transform | None = None,
        key_train_metric: dict[str, Metric] | None = None,
        additional_metrics: dict[str, Metric] | None = None,
        metric_cmp_fn: Callable = default_metric_cmp_fn,
        train_handlers: Sequence | None = None,
        decollate: bool = True,
        optim_set_to_none: bool = False,
        to_kwargs: dict | None = None,
        amp_kwargs: dict | None = None,
    ):
        if not isinstance(train_data_loader, DataLoader):
            raise ValueError("train_data_loader must be PyTorch DataLoader.")

        # set up Ignite engine and environments
        super().__init__(
            device=device,
            max_epochs=max_epochs,
            data_loader=train_data_loader,
            epoch_length=epoch_length,
            non_blocking=non_blocking,
            prepare_batch=d_prepare_batch,
            iteration_update=iteration_update,
            key_metric=key_train_metric,
            additional_metrics=additional_metrics,
            metric_cmp_fn=metric_cmp_fn,
            handlers=train_handlers,
            postprocessing=postprocessing,
            decollate=decollate,
            to_kwargs=to_kwargs,
            amp_kwargs=amp_kwargs,
        )
        self.g_network = g_network
        self.g_optimizer = g_optimizer
        self.g_loss_function = g_loss_function
        self.g_inferer = SimpleInferer() if g_inferer is None else g_inferer
        self.d_network = d_network
        self.d_optimizer = d_optimizer
        self.d_loss_function = d_loss_function
        self.d_inferer = SimpleInferer() if d_inferer is None else d_inferer
        self.d_train_steps = d_train_steps
        self.latent_shape = latent_shape
        self.g_prepare_batch = g_prepare_batch
        self.g_update_latents = g_update_latents
        self.optim_set_to_none = optim_set_to_none

    def _iteration(
        self, engine: VaeGanTrainer, batchdata: dict | Sequence
    ) -> dict[str, torch.Tensor | int | float | bool]:
        """
        Callback function for Adversarial Training processing logic of 1 iteration in Ignite Engine.
        Args:
            engine: `VaeGanTrainer` to execute operation for an iteration.
            batchdata: input data for this iteration, usually can be dictionary or tuple of Tensor data.
        Raises:
            ValueError: must provide batch data for current iteration.
        """
        if batchdata is None:
            raise ValueError("must provide batch data for current iteration.")

        d_input = engine.prepare_batch(batchdata, engine.state.device, engine.non_blocking, **engine.to_kwargs)[0]
        g_input = d_input
        g_output, z_mu, z_sigma = engine.g_inferer(g_input, engine.g_network)

        # Train Generator
        engine.g_optimizer.zero_grad(set_to_none=engine.optim_set_to_none)
        g_loss = engine.g_loss_function(g_output, g_input, z_mu, z_sigma)
        g_loss.backward()
        engine.g_optimizer.step()

        # Train Discriminator
        d_total_loss = torch.zeros(1)
        for _ in range(engine.d_train_steps):
            engine.d_optimizer.zero_grad(set_to_none=engine.optim_set_to_none)
            dloss = engine.d_loss_function(g_output, d_input)
            dloss.backward()
            engine.d_optimizer.step()
            d_total_loss += dloss.item()

        return {
            GanKeys.REALS: d_input,
            GanKeys.FAKES: g_output,
            GanKeys.LATENTS: g_input,
            GanKeys.GLOSS: g_loss.item(),
            GanKeys.DLOSS: d_total_loss.item(),
        }


class LDMTrainer(SupervisedTrainer):
    """
    Standard supervised training method with image and label, inherits from ``Trainer`` and ``Workflow``.
    Args:
        device: an object representing the device on which to run.
        max_epochs: the total epoch number for trainer to run.
        train_data_loader: Ignite engine use data_loader to run, must be Iterable or torch.DataLoader.
        network: network to train in the trainer, should be regular PyTorch `torch.nn.Module`.
        optimizer: the optimizer associated to the network, should be regular PyTorch optimizer from `torch.optim`
            or its subclass.
        loss_function: the loss function associated to the optimizer, should be regular PyTorch loss,
            which inherit from `torch.nn.modules.loss`.
        epoch_length: number of iterations for one epoch, default to `len(train_data_loader)`.
        non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously
            with respect to the host. For other cases, this argument has no effect.
        prepare_batch: function to parse expected data (usually `image`, `label` and other network args)
            from `engine.state.batch` for every iteration, for more details please refer to:
            https://pytorch.org/ignite/generated/ignite.engine.create_supervised_trainer.html.
        iteration_update: the callable function for every iteration, expect to accept `engine`
            and `engine.state.batch` as inputs, return data will be stored in `engine.state.output`.
            if not provided, use `self._iteration()` instead. for more details please refer to:
            https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html.
        inferer: inference method that execute model forward on input data, like: SlidingWindow, etc.
        postprocessing: execute additional transformation for the model output data.
            Typically, several Tensor based transforms composed by `Compose`.
        key_train_metric: compute metric when every iteration completed, and save average value to
            engine.state.metrics when epoch completed. key_train_metric is the main metric to compare and save the
            checkpoint into files.
        additional_metrics: more Ignite metrics that also attach to Ignite Engine.
        metric_cmp_fn: function to compare current key metric with previous best key metric value,
            it must accept 2 args (current_metric, previous_best) and return a bool result: if `True`, will update
            `best_metric` and `best_metric_epoch` with current metric and epoch, default to `greater than`.
        train_handlers: every handler is a set of Ignite Event-Handlers, must have `attach` function, like:
            CheckpointHandler, StatsHandler, etc.
        amp: whether to enable auto-mixed-precision training, default is False.
        event_names: additional custom ignite events that will register to the engine.
            new events can be a list of str or `ignite.engine.events.EventEnum`.
        event_to_attr: a dictionary to map an event to a state attribute, then add to `engine.state`.
            for more details, check: https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html
            #ignite.engine.engine.Engine.register_events.
        decollate: whether to decollate the batch-first data to a list of data after model computation,
            recommend `decollate=True` when `postprocessing` uses components from `monai.transforms`.
            default to `True`.
        optim_set_to_none: when calling `optimizer.zero_grad()`, instead of setting to zero, set the grads to None.
            more details: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html.
        to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for
            `device`, `non_blocking`.
        amp_kwargs: dict of the args for `torch.cuda.amp.autocast()` API, for more details:
            https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast.
    """

    def __init__(
        self,
        device: str | torch.device,
        max_epochs: int,
        train_data_loader: Iterable | DataLoader,
        network: torch.nn.Module,
        autoencoder_model: torch.nn.Module,
        optimizer: Optimizer,
        loss_function: Callable,
        latent_shape: Sequence,
        inferer: Inferer,
        epoch_length: int | None = None,
        non_blocking: bool = False,
        prepare_batch: Callable = default_prepare_batch,
        iteration_update: Callable[[Engine, Any], Any] | None = None,
        postprocessing: Transform | None = None,
        key_train_metric: dict[str, Metric] | None = None,
        additional_metrics: dict[str, Metric] | None = None,
        metric_cmp_fn: Callable = default_metric_cmp_fn,
        train_handlers: Sequence | None = None,
        amp: bool = False,
        event_names: list[str | EventEnum | type[EventEnum]] | None = None,
        event_to_attr: dict | None = None,
        decollate: bool = True,
        optim_set_to_none: bool = False,
        to_kwargs: dict | None = None,
        amp_kwargs: dict | None = None,
    ) -> None:
        super().__init__(
            device=device,
            max_epochs=max_epochs,
            train_data_loader=train_data_loader,
            network=network,
            optimizer=optimizer,
            loss_function=loss_function,
            inferer=inferer,
            optim_set_to_none=optim_set_to_none,
            epoch_length=epoch_length,
            non_blocking=non_blocking,
            prepare_batch=prepare_batch,
            iteration_update=iteration_update,
            postprocessing=postprocessing,
            key_train_metric=key_train_metric,
            additional_metrics=additional_metrics,
            metric_cmp_fn=metric_cmp_fn,
            train_handlers=train_handlers,
            amp=amp,
            event_names=event_names,
            event_to_attr=event_to_attr,
            decollate=decollate,
            to_kwargs=to_kwargs,
            amp_kwargs=amp_kwargs,
        )

        self.latent_shape = latent_shape
        self.autoencoder_model = autoencoder_model

    def _iteration(self, engine: LDMTrainer, batchdata: dict[str, torch.Tensor]) -> dict:
        """
        Callback function for the Supervised Training processing logic of 1 iteration in Ignite Engine.
        Return below items in a dictionary:
            - IMAGE: image Tensor data for model input, already moved to device.
            - LABEL: label Tensor data corresponding to the image, already moved to device.
            - PRED: prediction result of model.
            - LOSS: loss value computed by loss function.
        Args:
            engine: `SupervisedTrainer` to execute operation for an iteration.
            batchdata: input data for this iteration, usually can be dictionary or tuple of Tensor data.
        Raises:
            ValueError: When ``batchdata`` is None.
        """
        if batchdata is None:
            raise ValueError("Must provide batch data for current iteration.")
        batch = engine.prepare_batch(batchdata, engine.state.device, engine.non_blocking, **engine.to_kwargs)
        if len(batch) == 2:
            images, labels = batch
            args: tuple = ()
            kwargs: dict = {}
        else:
            images, labels, args, kwargs = batch
        # put iteration outputs into engine.state
        engine.state.output = {CommonKeys.IMAGE: images}

        # generate noise
        noise_shape = [images.shape[0]] + list(self.latent_shape)
        noise = torch.randn(noise_shape, dtype=images.dtype).to(images.device)
        engine.state.output = {"noise": noise}

        # Create timesteps
        timesteps = torch.randint(
            0, engine.inferer.scheduler.num_train_timesteps, (images.shape[0],), device=images.device
        ).long()

        def _compute_pred_loss():
            # predicted noise
            engine.state.output[CommonKeys.PRED] = engine.inferer(
                inputs=images,
                autoencoder_model=self.autoencoder_model,
                diffusion_model=engine.network,
                noise=noise,
                timesteps=timesteps,
            )
            engine.fire_event(IterationEvents.FORWARD_COMPLETED)
            # compute loss
            engine.state.output[CommonKeys.LOSS] = engine.loss_function(
                engine.state.output[CommonKeys.PRED], noise
            ).mean()
            engine.fire_event(IterationEvents.LOSS_COMPLETED)

        engine.network.train()
        engine.optimizer.zero_grad(set_to_none=engine.optim_set_to_none)

        if engine.amp and engine.scaler is not None:
            with torch.cuda.amp.autocast(**engine.amp_kwargs):
                _compute_pred_loss()
            engine.scaler.scale(engine.state.output[CommonKeys.LOSS]).backward()
            engine.fire_event(IterationEvents.BACKWARD_COMPLETED)
            engine.scaler.step(engine.optimizer)
            engine.scaler.update()
        else:
            _compute_pred_loss()
            engine.state.output[CommonKeys.LOSS].backward()
            engine.fire_event(IterationEvents.BACKWARD_COMPLETED)
            engine.optimizer.step()
        engine.fire_event(IterationEvents.MODEL_COMPLETED)

        return engine.state.output