File size: 19,889 Bytes
509db6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Callable, Iterable, Sequence
import torch
from monai.config import IgniteInfo
from monai.engines.utils import IterationEvents, default_metric_cmp_fn, default_prepare_batch
from monai.inferers import Inferer, SimpleInferer
from monai.transforms import Transform
from monai.utils import min_version, optional_import
from monai.utils.enums import CommonKeys, GanKeys
from torch.optim.optimizer import Optimizer
from torch.utils.data import DataLoader
if TYPE_CHECKING:
from ignite.engine import Engine, EventEnum
from ignite.metrics import Metric
else:
Engine, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Engine")
Metric, _ = optional_import("ignite.metrics", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Metric")
EventEnum, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "EventEnum")
from monai.engines.trainer import SupervisedTrainer, Trainer
class VaeGanTrainer(Trainer):
"""
Generative adversarial network training based on Goodfellow et al. 2014 https://arxiv.org/abs/1406.266,
inherits from ``Trainer`` and ``Workflow``.
Training Loop: for each batch of data size `m`
1. Generate `m` fakes from random latent codes.
2. Update discriminator with these fakes and current batch reals, repeated d_train_steps times.
3. If g_update_latents, generate `m` fakes from new random latent codes.
4. Update generator with these fakes using discriminator feedback.
Args:
device: an object representing the device on which to run.
max_epochs: the total epoch number for engine to run.
train_data_loader: Core ignite engines uses `DataLoader` for training loop batchdata.
g_network: generator (G) network architecture.
g_optimizer: G optimizer function.
g_loss_function: G loss function for optimizer.
d_network: discriminator (D) network architecture.
d_optimizer: D optimizer function.
d_loss_function: D loss function for optimizer.
epoch_length: number of iterations for one epoch, default to `len(train_data_loader)`.
g_inferer: inference method to execute G model forward. Defaults to ``SimpleInferer()``.
d_inferer: inference method to execute D model forward. Defaults to ``SimpleInferer()``.
d_train_steps: number of times to update D with real data minibatch. Defaults to ``1``.
latent_shape: size of G input latent code. Defaults to ``64``.
non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously
with respect to the host. For other cases, this argument has no effect.
d_prepare_batch: callback function to prepare batchdata for D inferer.
Defaults to return ``GanKeys.REALS`` in batchdata dict. for more details please refer to:
https://pytorch.org/ignite/generated/ignite.engine.create_supervised_trainer.html.
g_prepare_batch: callback function to create batch of latent input for G inferer.
Defaults to return random latents. for more details please refer to:
https://pytorch.org/ignite/generated/ignite.engine.create_supervised_trainer.html.
g_update_latents: Calculate G loss with new latent codes. Defaults to ``True``.
iteration_update: the callable function for every iteration, expect to accept `engine`
and `engine.state.batch` as inputs, return data will be stored in `engine.state.output`.
if not provided, use `self._iteration()` instead. for more details please refer to:
https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html.
postprocessing: execute additional transformation for the model output data.
Typically, several Tensor based transforms composed by `Compose`.
key_train_metric: compute metric when every iteration completed, and save average value to
engine.state.metrics when epoch completed. key_train_metric is the main metric to compare and save the
checkpoint into files.
additional_metrics: more Ignite metrics that also attach to Ignite Engine.
metric_cmp_fn: function to compare current key metric with previous best key metric value,
it must accept 2 args (current_metric, previous_best) and return a bool result: if `True`, will update
`best_metric` and `best_metric_epoch` with current metric and epoch, default to `greater than`.
train_handlers: every handler is a set of Ignite Event-Handlers, must have `attach` function, like:
CheckpointHandler, StatsHandler, etc.
decollate: whether to decollate the batch-first data to a list of data after model computation,
recommend `decollate=True` when `postprocessing` uses components from `monai.transforms`.
default to `True`.
optim_set_to_none: when calling `optimizer.zero_grad()`, instead of setting to zero, set the grads to None.
more details: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html.
to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for
`device`, `non_blocking`.
amp_kwargs: dict of the args for `torch.cuda.amp.autocast()` API, for more details:
https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast.
"""
def __init__(
self,
device: str | torch.device,
max_epochs: int,
train_data_loader: DataLoader,
g_network: torch.nn.Module,
g_optimizer: Optimizer,
g_loss_function: Callable,
d_network: torch.nn.Module,
d_optimizer: Optimizer,
d_loss_function: Callable,
epoch_length: int | None = None,
g_inferer: Inferer | None = None,
d_inferer: Inferer | None = None,
d_train_steps: int = 1,
latent_shape: int = 64,
non_blocking: bool = False,
d_prepare_batch: Callable = default_prepare_batch,
g_prepare_batch: Callable = default_prepare_batch,
g_update_latents: bool = True,
iteration_update: Callable[[Engine, Any], Any] | None = None,
postprocessing: Transform | None = None,
key_train_metric: dict[str, Metric] | None = None,
additional_metrics: dict[str, Metric] | None = None,
metric_cmp_fn: Callable = default_metric_cmp_fn,
train_handlers: Sequence | None = None,
decollate: bool = True,
optim_set_to_none: bool = False,
to_kwargs: dict | None = None,
amp_kwargs: dict | None = None,
):
if not isinstance(train_data_loader, DataLoader):
raise ValueError("train_data_loader must be PyTorch DataLoader.")
# set up Ignite engine and environments
super().__init__(
device=device,
max_epochs=max_epochs,
data_loader=train_data_loader,
epoch_length=epoch_length,
non_blocking=non_blocking,
prepare_batch=d_prepare_batch,
iteration_update=iteration_update,
key_metric=key_train_metric,
additional_metrics=additional_metrics,
metric_cmp_fn=metric_cmp_fn,
handlers=train_handlers,
postprocessing=postprocessing,
decollate=decollate,
to_kwargs=to_kwargs,
amp_kwargs=amp_kwargs,
)
self.g_network = g_network
self.g_optimizer = g_optimizer
self.g_loss_function = g_loss_function
self.g_inferer = SimpleInferer() if g_inferer is None else g_inferer
self.d_network = d_network
self.d_optimizer = d_optimizer
self.d_loss_function = d_loss_function
self.d_inferer = SimpleInferer() if d_inferer is None else d_inferer
self.d_train_steps = d_train_steps
self.latent_shape = latent_shape
self.g_prepare_batch = g_prepare_batch
self.g_update_latents = g_update_latents
self.optim_set_to_none = optim_set_to_none
def _iteration(
self, engine: VaeGanTrainer, batchdata: dict | Sequence
) -> dict[str, torch.Tensor | int | float | bool]:
"""
Callback function for Adversarial Training processing logic of 1 iteration in Ignite Engine.
Args:
engine: `VaeGanTrainer` to execute operation for an iteration.
batchdata: input data for this iteration, usually can be dictionary or tuple of Tensor data.
Raises:
ValueError: must provide batch data for current iteration.
"""
if batchdata is None:
raise ValueError("must provide batch data for current iteration.")
d_input = engine.prepare_batch(batchdata, engine.state.device, engine.non_blocking, **engine.to_kwargs)[0]
g_input = d_input
g_output, z_mu, z_sigma = engine.g_inferer(g_input, engine.g_network)
# Train Generator
engine.g_optimizer.zero_grad(set_to_none=engine.optim_set_to_none)
g_loss = engine.g_loss_function(g_output, g_input, z_mu, z_sigma)
g_loss.backward()
engine.g_optimizer.step()
# Train Discriminator
d_total_loss = torch.zeros(1)
for _ in range(engine.d_train_steps):
engine.d_optimizer.zero_grad(set_to_none=engine.optim_set_to_none)
dloss = engine.d_loss_function(g_output, d_input)
dloss.backward()
engine.d_optimizer.step()
d_total_loss += dloss.item()
return {
GanKeys.REALS: d_input,
GanKeys.FAKES: g_output,
GanKeys.LATENTS: g_input,
GanKeys.GLOSS: g_loss.item(),
GanKeys.DLOSS: d_total_loss.item(),
}
class LDMTrainer(SupervisedTrainer):
"""
Standard supervised training method with image and label, inherits from ``Trainer`` and ``Workflow``.
Args:
device: an object representing the device on which to run.
max_epochs: the total epoch number for trainer to run.
train_data_loader: Ignite engine use data_loader to run, must be Iterable or torch.DataLoader.
network: network to train in the trainer, should be regular PyTorch `torch.nn.Module`.
optimizer: the optimizer associated to the network, should be regular PyTorch optimizer from `torch.optim`
or its subclass.
loss_function: the loss function associated to the optimizer, should be regular PyTorch loss,
which inherit from `torch.nn.modules.loss`.
epoch_length: number of iterations for one epoch, default to `len(train_data_loader)`.
non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously
with respect to the host. For other cases, this argument has no effect.
prepare_batch: function to parse expected data (usually `image`, `label` and other network args)
from `engine.state.batch` for every iteration, for more details please refer to:
https://pytorch.org/ignite/generated/ignite.engine.create_supervised_trainer.html.
iteration_update: the callable function for every iteration, expect to accept `engine`
and `engine.state.batch` as inputs, return data will be stored in `engine.state.output`.
if not provided, use `self._iteration()` instead. for more details please refer to:
https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html.
inferer: inference method that execute model forward on input data, like: SlidingWindow, etc.
postprocessing: execute additional transformation for the model output data.
Typically, several Tensor based transforms composed by `Compose`.
key_train_metric: compute metric when every iteration completed, and save average value to
engine.state.metrics when epoch completed. key_train_metric is the main metric to compare and save the
checkpoint into files.
additional_metrics: more Ignite metrics that also attach to Ignite Engine.
metric_cmp_fn: function to compare current key metric with previous best key metric value,
it must accept 2 args (current_metric, previous_best) and return a bool result: if `True`, will update
`best_metric` and `best_metric_epoch` with current metric and epoch, default to `greater than`.
train_handlers: every handler is a set of Ignite Event-Handlers, must have `attach` function, like:
CheckpointHandler, StatsHandler, etc.
amp: whether to enable auto-mixed-precision training, default is False.
event_names: additional custom ignite events that will register to the engine.
new events can be a list of str or `ignite.engine.events.EventEnum`.
event_to_attr: a dictionary to map an event to a state attribute, then add to `engine.state`.
for more details, check: https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html
#ignite.engine.engine.Engine.register_events.
decollate: whether to decollate the batch-first data to a list of data after model computation,
recommend `decollate=True` when `postprocessing` uses components from `monai.transforms`.
default to `True`.
optim_set_to_none: when calling `optimizer.zero_grad()`, instead of setting to zero, set the grads to None.
more details: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html.
to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for
`device`, `non_blocking`.
amp_kwargs: dict of the args for `torch.cuda.amp.autocast()` API, for more details:
https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast.
"""
def __init__(
self,
device: str | torch.device,
max_epochs: int,
train_data_loader: Iterable | DataLoader,
network: torch.nn.Module,
autoencoder_model: torch.nn.Module,
optimizer: Optimizer,
loss_function: Callable,
latent_shape: Sequence,
inferer: Inferer,
epoch_length: int | None = None,
non_blocking: bool = False,
prepare_batch: Callable = default_prepare_batch,
iteration_update: Callable[[Engine, Any], Any] | None = None,
postprocessing: Transform | None = None,
key_train_metric: dict[str, Metric] | None = None,
additional_metrics: dict[str, Metric] | None = None,
metric_cmp_fn: Callable = default_metric_cmp_fn,
train_handlers: Sequence | None = None,
amp: bool = False,
event_names: list[str | EventEnum | type[EventEnum]] | None = None,
event_to_attr: dict | None = None,
decollate: bool = True,
optim_set_to_none: bool = False,
to_kwargs: dict | None = None,
amp_kwargs: dict | None = None,
) -> None:
super().__init__(
device=device,
max_epochs=max_epochs,
train_data_loader=train_data_loader,
network=network,
optimizer=optimizer,
loss_function=loss_function,
inferer=inferer,
optim_set_to_none=optim_set_to_none,
epoch_length=epoch_length,
non_blocking=non_blocking,
prepare_batch=prepare_batch,
iteration_update=iteration_update,
postprocessing=postprocessing,
key_train_metric=key_train_metric,
additional_metrics=additional_metrics,
metric_cmp_fn=metric_cmp_fn,
train_handlers=train_handlers,
amp=amp,
event_names=event_names,
event_to_attr=event_to_attr,
decollate=decollate,
to_kwargs=to_kwargs,
amp_kwargs=amp_kwargs,
)
self.latent_shape = latent_shape
self.autoencoder_model = autoencoder_model
def _iteration(self, engine: LDMTrainer, batchdata: dict[str, torch.Tensor]) -> dict:
"""
Callback function for the Supervised Training processing logic of 1 iteration in Ignite Engine.
Return below items in a dictionary:
- IMAGE: image Tensor data for model input, already moved to device.
- LABEL: label Tensor data corresponding to the image, already moved to device.
- PRED: prediction result of model.
- LOSS: loss value computed by loss function.
Args:
engine: `SupervisedTrainer` to execute operation for an iteration.
batchdata: input data for this iteration, usually can be dictionary or tuple of Tensor data.
Raises:
ValueError: When ``batchdata`` is None.
"""
if batchdata is None:
raise ValueError("Must provide batch data for current iteration.")
batch = engine.prepare_batch(batchdata, engine.state.device, engine.non_blocking, **engine.to_kwargs)
if len(batch) == 2:
images, labels = batch
args: tuple = ()
kwargs: dict = {}
else:
images, labels, args, kwargs = batch
# put iteration outputs into engine.state
engine.state.output = {CommonKeys.IMAGE: images}
# generate noise
noise_shape = [images.shape[0]] + list(self.latent_shape)
noise = torch.randn(noise_shape, dtype=images.dtype).to(images.device)
engine.state.output = {"noise": noise}
# Create timesteps
timesteps = torch.randint(
0, engine.inferer.scheduler.num_train_timesteps, (images.shape[0],), device=images.device
).long()
def _compute_pred_loss():
# predicted noise
engine.state.output[CommonKeys.PRED] = engine.inferer(
inputs=images,
autoencoder_model=self.autoencoder_model,
diffusion_model=engine.network,
noise=noise,
timesteps=timesteps,
)
engine.fire_event(IterationEvents.FORWARD_COMPLETED)
# compute loss
engine.state.output[CommonKeys.LOSS] = engine.loss_function(
engine.state.output[CommonKeys.PRED], noise
).mean()
engine.fire_event(IterationEvents.LOSS_COMPLETED)
engine.network.train()
engine.optimizer.zero_grad(set_to_none=engine.optim_set_to_none)
if engine.amp and engine.scaler is not None:
with torch.cuda.amp.autocast(**engine.amp_kwargs):
_compute_pred_loss()
engine.scaler.scale(engine.state.output[CommonKeys.LOSS]).backward()
engine.fire_event(IterationEvents.BACKWARD_COMPLETED)
engine.scaler.step(engine.optimizer)
engine.scaler.update()
else:
_compute_pred_loss()
engine.state.output[CommonKeys.LOSS].backward()
engine.fire_event(IterationEvents.BACKWARD_COMPLETED)
engine.optimizer.step()
engine.fire_event(IterationEvents.MODEL_COMPLETED)
return engine.state.output
|