|
{ |
|
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_generator_ldm_20230507.json", |
|
"version": "1.0.6", |
|
"changelog": { |
|
"1.0.6": "update with new lr scheduler api in inference", |
|
"1.0.5": "fix the wrong GPU index issue of multi-node", |
|
"1.0.4": "update with new lr scheduler api", |
|
"1.0.3": "update required packages", |
|
"1.0.2": "remove unused saver in inference", |
|
"1.0.1": "fix inference folder error", |
|
"1.0.0": "Initial release" |
|
}, |
|
"monai_version": "1.2.0", |
|
"pytorch_version": "1.13.1", |
|
"numpy_version": "1.22.2", |
|
"optional_packages_version": { |
|
"nibabel": "5.1.0", |
|
"lpips": "0.1.4", |
|
"monai-generative": "0.2.2" |
|
}, |
|
"name": "BraTS MRI axial slices latent diffusion generation", |
|
"task": "BraTS MRI axial slices synthesis", |
|
"description": "A generative model for creating 2D brain MRI axial slices from Gaussian noise based on BraTS dataset", |
|
"authors": "MONAI team", |
|
"copyright": "Copyright (c) MONAI Consortium", |
|
"data_source": "http://medicaldecathlon.com/", |
|
"data_type": "nibabel", |
|
"image_classes": "Flair brain MRI axial slices with 1x1 mm voxel size", |
|
"eval_metrics": {}, |
|
"intended_use": "This is a research tool/prototype and not to be used clinically", |
|
"references": [], |
|
"autoencoder_data_format": { |
|
"inputs": { |
|
"image": { |
|
"type": "image", |
|
"format": "image", |
|
"num_channels": 1, |
|
"spatial_shape": [ |
|
240, |
|
240 |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": true |
|
} |
|
}, |
|
"outputs": { |
|
"pred": { |
|
"type": "image", |
|
"format": "image", |
|
"num_channels": 1, |
|
"spatial_shape": [ |
|
240, |
|
240 |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": true, |
|
"channel_def": { |
|
"0": "image" |
|
} |
|
} |
|
} |
|
}, |
|
"generator_data_format": { |
|
"inputs": { |
|
"latent": { |
|
"type": "noise", |
|
"format": "image", |
|
"num_channels": 1, |
|
"spatial_shape": [ |
|
64, |
|
64 |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": true |
|
} |
|
}, |
|
"outputs": { |
|
"pred": { |
|
"type": "feature", |
|
"format": "image", |
|
"num_channels": 1, |
|
"spatial_shape": [ |
|
64, |
|
64 |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": true, |
|
"channel_def": { |
|
"0": "image" |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|