# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations from typing import TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from monai.apps.detection.networks.retinanet_detector import RetinaNetDetector from monai.config import IgniteInfo from monai.engines.evaluator import SupervisedEvaluator from monai.engines.utils import IterationEvents, default_metric_cmp_fn from monai.transforms import Transform from monai.utils import ForwardMode, min_version, optional_import from monai.utils.enums import CommonKeys as Keys from torch.utils.data import DataLoader from .detection_inferer import RetinaNetInferer if TYPE_CHECKING: from ignite.engine import Engine, EventEnum from ignite.metrics import Metric else: Engine, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Engine") Metric, _ = optional_import("ignite.metrics", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Metric") EventEnum, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "EventEnum") __all__ = ["DetectionEvaluator"] def detection_prepare_val_batch( batchdata: List[Dict[str, torch.Tensor]], device: Optional[Union[str, torch.device]] = None, non_blocking: bool = False, **kwargs, ) -> Union[Tuple[torch.Tensor, Optional[torch.Tensor]], torch.Tensor]: """ Default function to prepare the data for current iteration. Args `batchdata`, `device`, `non_blocking` refer to the ignite API: https://pytorch.org/ignite/v0.4.8/generated/ignite.engine.create_supervised_trainer.html. `kwargs` supports other args for `Tensor.to()` API. Returns: image, label(optional). """ inputs = [ batch_data_i["image"].to(device=device, non_blocking=non_blocking, **kwargs) for batch_data_i in batchdata ] if isinstance(batchdata[0].get(Keys.LABEL), torch.Tensor): targets = [ dict( label=batch_data_i["label"].to(device=device, non_blocking=non_blocking, **kwargs), box=batch_data_i["box"].to(device=device, non_blocking=non_blocking, **kwargs), ) for batch_data_i in batchdata ] return (inputs, targets) return inputs, None class DetectionEvaluator(SupervisedEvaluator): """ Supervised detection evaluation method with image and label, inherits from ``SupervisedEvaluator`` and ``Workflow``. Args: device: an object representing the device on which to run. val_data_loader: Ignite engine use data_loader to run, must be Iterable, typically be torch.DataLoader. network: detector to evaluate in the evaluator, should be regular PyTorch `torch.nn.Module`. epoch_length: number of iterations for one epoch, default to `len(val_data_loader)`. non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. prepare_batch: function to parse expected data (usually `image`, `label` and other network args) from `engine.state.batch` for every iteration, for more details please refer to: https://pytorch.org/ignite/generated/ignite.engine.create_supervised_trainer.html. iteration_update: the callable function for every iteration, expect to accept `engine` and `engine.state.batch` as inputs, return data will be stored in `engine.state.output`. if not provided, use `self._iteration()` instead. for more details please refer to: https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html. inferer: inference method that execute model forward on input data, like: SlidingWindow, etc. postprocessing: execute additional transformation for the model output data. Typically, several Tensor based transforms composed by `Compose`. key_val_metric: compute metric when every iteration completed, and save average value to engine.state.metrics when epoch completed. key_val_metric is the main metric to compare and save the checkpoint into files. additional_metrics: more Ignite metrics that also attach to Ignite Engine. metric_cmp_fn: function to compare current key metric with previous best key metric value, it must accept 2 args (current_metric, previous_best) and return a bool result: if `True`, will update `best_metric` and `best_metric_epoch` with current metric and epoch, default to `greater than`. val_handlers: every handler is a set of Ignite Event-Handlers, must have `attach` function, like: CheckpointHandler, StatsHandler, etc. amp: whether to enable auto-mixed-precision evaluation, default is False. mode: model forward mode during evaluation, should be 'eval' or 'train', which maps to `model.eval()` or `model.train()`, default to 'eval'. event_names: additional custom ignite events that will register to the engine. new events can be a list of str or `ignite.engine.events.EventEnum`. event_to_attr: a dictionary to map an event to a state attribute, then add to `engine.state`. for more details, check: https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html #ignite.engine.engine.Engine.register_events. decollate: whether to decollate the batch-first data to a list of data after model computation, recommend `decollate=True` when `postprocessing` uses components from `monai.transforms`. default to `True`. to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for `device`, `non_blocking`. amp_kwargs: dict of the args for `torch.cuda.amp.autocast()` API, for more details: https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast. """ def __init__( self, device: torch.device, val_data_loader: Iterable | DataLoader, network: RetinaNetDetector, epoch_length: int | None = None, non_blocking: bool = False, prepare_batch: Callable = detection_prepare_val_batch, iteration_update: Callable[[Engine, Any], Any] | None = None, inferer: RetinaNetInferer | None = None, postprocessing: Transform | None = None, key_val_metric: dict[str, Metric] | None = None, additional_metrics: dict[str, Metric] | None = None, metric_cmp_fn: Callable = default_metric_cmp_fn, val_handlers: Sequence | None = None, amp: bool = False, mode: ForwardMode | str = ForwardMode.EVAL, event_names: list[str | EventEnum] | None = None, event_to_attr: dict | None = None, decollate: bool = True, to_kwargs: dict | None = None, amp_kwargs: dict | None = None, ) -> None: super().__init__( device=device, val_data_loader=val_data_loader, network=network, epoch_length=epoch_length, non_blocking=non_blocking, prepare_batch=prepare_batch, iteration_update=iteration_update, inferer=inferer, postprocessing=postprocessing, key_val_metric=key_val_metric, additional_metrics=additional_metrics, metric_cmp_fn=metric_cmp_fn, val_handlers=val_handlers, amp=amp, mode=mode, event_names=event_names, event_to_attr=event_to_attr, decollate=decollate, to_kwargs=to_kwargs, amp_kwargs=amp_kwargs, ) def _register_decollate(self): """ Register the decollate operation for batch data, will execute after model forward and loss forward. """ @self.on(IterationEvents.MODEL_COMPLETED) def _decollate_data(engine: Engine) -> None: output_list = [] for i in range(len(engine.state.output[Keys.IMAGE])): output_list.append({}) for k in engine.state.output.keys(): if engine.state.output[k] is not None: output_list[i][k] = engine.state.output[k][i] engine.state.output = output_list