update deterministic training results
Browse files- README.md +3 -3
- configs/evaluate.json +0 -3
- configs/inference.json +1 -1
- configs/metadata.json +3 -2
- docs/README.md +3 -3
- models/model.pt +1 -1
- models/model.ts +2 -2
README.md
CHANGED
@@ -43,13 +43,13 @@ Two channels
|
|
43 |
- Label 0: everything else
|
44 |
|
45 |
## Performance
|
46 |
-
Dice score is used for evaluating the performance of the model. This model achieves a mean dice score of 0.
|
47 |
|
48 |
#### Training Loss
|
49 |
-
![A graph showing the training loss over 1260 epochs (10080 iterations).](https://developer.download.nvidia.com/assets/Clara/Images/
|
50 |
|
51 |
#### Validation Dice
|
52 |
-
![A graph showing the validation mean Dice over 1260 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/
|
53 |
|
54 |
#### TensorRT speedup
|
55 |
The `spleen_ct_segmentation` bundle supports the TensorRT acceleration. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
|
|
|
43 |
- Label 0: everything else
|
44 |
|
45 |
## Performance
|
46 |
+
Dice score is used for evaluating the performance of the model. This model achieves a mean dice score of 0.961.
|
47 |
|
48 |
#### Training Loss
|
49 |
+
![A graph showing the training loss over 1260 epochs (10080 iterations).](https://developer.download.nvidia.com/assets/Clara/Images/monai_spleen_ct_segmentation_train.png)
|
50 |
|
51 |
#### Validation Dice
|
52 |
+
![A graph showing the validation mean Dice over 1260 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_spleen_ct_segmentation_val.png)
|
53 |
|
54 |
#### TensorRT speedup
|
55 |
The `spleen_ct_segmentation` bundle supports the TensorRT acceleration. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
|
configs/evaluate.json
CHANGED
@@ -72,9 +72,6 @@
|
|
72 |
"summary_ops": "*"
|
73 |
}
|
74 |
],
|
75 |
-
"initialize": [
|
76 |
-
"$setattr(torch.backends.cudnn, 'benchmark', True)"
|
77 |
-
],
|
78 |
"run": [
|
79 |
"$@validate#evaluator.run()"
|
80 |
]
|
|
|
72 |
"summary_ops": "*"
|
73 |
}
|
74 |
],
|
|
|
|
|
|
|
75 |
"run": [
|
76 |
"$@validate#evaluator.run()"
|
77 |
]
|
configs/inference.json
CHANGED
@@ -147,7 +147,7 @@
|
|
147 |
"amp": true
|
148 |
},
|
149 |
"initialize": [
|
150 |
-
"$
|
151 |
],
|
152 |
"run": [
|
153 |
|
|
147 |
"amp": true
|
148 |
},
|
149 |
"initialize": [
|
150 |
+
"$monai.utils.set_determinism(seed=123)"
|
151 |
],
|
152 |
"run": [
|
153 |
configs/metadata.json
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
-
"version": "0.4.
|
4 |
"changelog": {
|
|
|
5 |
"0.4.7": "update the TensorRT part in the README file",
|
6 |
"0.4.6": "fix mgpu finalize issue",
|
7 |
"0.4.5": "enable deterministic training",
|
@@ -43,7 +44,7 @@
|
|
43 |
"label_classes": "single channel data, 1 is spleen, 0 is everything else",
|
44 |
"pred_classes": "2 channels OneHot data, channel 1 is spleen, channel 0 is background",
|
45 |
"eval_metrics": {
|
46 |
-
"mean_dice": 0.
|
47 |
},
|
48 |
"intended_use": "This is an example, not to be used for diagnostic purposes",
|
49 |
"references": [
|
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
+
"version": "0.4.8",
|
4 |
"changelog": {
|
5 |
+
"0.4.8": "update deterministic training results",
|
6 |
"0.4.7": "update the TensorRT part in the README file",
|
7 |
"0.4.6": "fix mgpu finalize issue",
|
8 |
"0.4.5": "enable deterministic training",
|
|
|
44 |
"label_classes": "single channel data, 1 is spleen, 0 is everything else",
|
45 |
"pred_classes": "2 channels OneHot data, channel 1 is spleen, channel 0 is background",
|
46 |
"eval_metrics": {
|
47 |
+
"mean_dice": 0.961
|
48 |
},
|
49 |
"intended_use": "This is an example, not to be used for diagnostic purposes",
|
50 |
"references": [
|
docs/README.md
CHANGED
@@ -36,13 +36,13 @@ Two channels
|
|
36 |
- Label 0: everything else
|
37 |
|
38 |
## Performance
|
39 |
-
Dice score is used for evaluating the performance of the model. This model achieves a mean dice score of 0.
|
40 |
|
41 |
#### Training Loss
|
42 |
-
![A graph showing the training loss over 1260 epochs (10080 iterations).](https://developer.download.nvidia.com/assets/Clara/Images/
|
43 |
|
44 |
#### Validation Dice
|
45 |
-
![A graph showing the validation mean Dice over 1260 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/
|
46 |
|
47 |
#### TensorRT speedup
|
48 |
The `spleen_ct_segmentation` bundle supports the TensorRT acceleration. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
|
|
|
36 |
- Label 0: everything else
|
37 |
|
38 |
## Performance
|
39 |
+
Dice score is used for evaluating the performance of the model. This model achieves a mean dice score of 0.961.
|
40 |
|
41 |
#### Training Loss
|
42 |
+
![A graph showing the training loss over 1260 epochs (10080 iterations).](https://developer.download.nvidia.com/assets/Clara/Images/monai_spleen_ct_segmentation_train.png)
|
43 |
|
44 |
#### Validation Dice
|
45 |
+
![A graph showing the validation mean Dice over 1260 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_spleen_ct_segmentation_val.png)
|
46 |
|
47 |
#### TensorRT speedup
|
48 |
The `spleen_ct_segmentation` bundle supports the TensorRT acceleration. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
|
models/model.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 19297197
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:502c312893994ec071a85c4f2e7d83a43f7789969faa73dae62f1291177f50fe
|
3 |
size 19297197
|
models/model.ts
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8d7b04a24b1a6016aa32c662913b907dab4fb91cd88a91cb7e0a8f11eeafec0
|
3 |
+
size 19412163
|