|
{ |
|
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", |
|
"version": "0.5.0", |
|
"changelog": { |
|
"0.5.0": "fix the wrong GPU index issue of multi-node", |
|
"0.4.9": "remove error dollar symbol in readme", |
|
"0.4.8": "add RAM usage with CacheDataset", |
|
"0.4.7": "deterministic retrain benchmark", |
|
"0.4.6": "fix mgpu finalize issue", |
|
"0.4.5": "enable deterministic training", |
|
"0.4.4": "update numbers", |
|
"0.4.3": "adapt to BundleWorkflow interface", |
|
"0.4.2": "fix train params of use_checkpoint", |
|
"0.4.1": "update params to supprot torch.jit.trace torchscript conversion", |
|
"0.4.0": "add name tag", |
|
"0.3.9": "use ITKreader to avoid mass logs at image loading", |
|
"0.3.8": "restructure readme to match updated template", |
|
"0.3.7": "Update metric in metadata", |
|
"0.3.6": "Update ckpt drive link", |
|
"0.3.5": "Update figure and benchmarking", |
|
"0.3.4": "Update figure link in readme", |
|
"0.3.3": "Update, verify MONAI 1.0.1 and Pytorch 1.13.0", |
|
"0.3.2": "enhance readme on commands example", |
|
"0.3.1": "fix license Copyright error", |
|
"0.3.0": "update license files", |
|
"0.2.0": "unify naming", |
|
"0.1.0": "complete the model package", |
|
"0.0.1": "initialize the model package structure" |
|
}, |
|
"monai_version": "1.2.0", |
|
"pytorch_version": "1.13.1", |
|
"numpy_version": "1.22.2", |
|
"optional_packages_version": { |
|
"nibabel": "4.0.1", |
|
"pytorch-ignite": "0.4.9", |
|
"einops": "0.4.1" |
|
}, |
|
"name": "Swin UNETR BTCV segmentation", |
|
"task": "BTCV multi-organ segmentation", |
|
"description": "A pre-trained model for volumetric (3D) multi-organ segmentation from CT image", |
|
"authors": "MONAI team", |
|
"copyright": "Copyright (c) MONAI Consortium", |
|
"data_source": "RawData.zip from https://www.synapse.org/#!Synapse:syn3193805/wiki/217752/", |
|
"data_type": "nibabel", |
|
"image_classes": "single channel data, intensity scaled to [0, 1]", |
|
"label_classes": "multi-channel data,0:background,1:spleen, 2:Right Kidney, 3:Left Kideny, 4:Gallbladder, 5:Esophagus, 6:Liver, 7:Stomach, 8:Aorta, 9:IVC, 10:Portal and Splenic Veins, 11:Pancreas, 12:Right adrenal gland, 13:Left adrenal gland", |
|
"pred_classes": "14 channels OneHot data, 0:background,1:spleen, 2:Right Kidney, 3:Left Kideny, 4:Gallbladder, 5:Esophagus, 6:Liver, 7:Stomach, 8:Aorta, 9:IVC, 10:Portal and Splenic Veins, 11:Pancreas, 12:Right adrenal gland, 13:Left adrenal gland", |
|
"eval_metrics": { |
|
"mean_dice": 0.82 |
|
}, |
|
"intended_use": "This is an example, not to be used for diagnostic purposes", |
|
"references": [ |
|
"Hatamizadeh, Ali, et al. 'Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images. arXiv preprint arXiv:2201.01266 (2022). https://arxiv.org/abs/2201.01266.", |
|
"Tang, Yucheng, et al. 'Self-supervised pre-training of swin transformers for 3d medical image analysis. arXiv preprint arXiv:2111.14791 (2021). https://arxiv.org/abs/2111.14791." |
|
], |
|
"network_data_format": { |
|
"inputs": { |
|
"image": { |
|
"type": "image", |
|
"format": "hounsfield", |
|
"modality": "CT", |
|
"num_channels": 1, |
|
"spatial_shape": [ |
|
96, |
|
96, |
|
96 |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": true, |
|
"channel_def": { |
|
"0": "image" |
|
} |
|
} |
|
}, |
|
"outputs": { |
|
"pred": { |
|
"type": "image", |
|
"format": "segmentation", |
|
"num_channels": 14, |
|
"spatial_shape": [ |
|
96, |
|
96, |
|
96 |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": true, |
|
"channel_def": { |
|
"0": "background", |
|
"1": "spleen", |
|
"2": "Right Kidney", |
|
"3": "Left Kideny", |
|
"4": "Gallbladder", |
|
"5": "Esophagus", |
|
"6": "Liver", |
|
"7": "Stomach", |
|
"8": "Aorta", |
|
"9": "IVC", |
|
"10": "Portal and Splenic Veins", |
|
"11": "Pancreas", |
|
"12": "Right adrenal gland", |
|
"13": "Left adrenal gland" |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|