monai
medical
katielink commited on
Commit
904a8fe
1 Parent(s): e187296

README.md fix

Browse files
Files changed (3) hide show
  1. README.md +2 -2
  2. configs/metadata.json +2 -1
  3. docs/README.md +2 -2
README.md CHANGED
@@ -49,7 +49,7 @@ The dataset used for training unfortunately cannot be made public, however the t
49
  The following command will train with the default NPZ filename `./valvelandmarks.npz`, assuming the current directory is the bundle directory:
50
 
51
  ```sh
52
- python -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json', 'configs/common.json']" \
53
  --bundle_root . --dataset_file ./valvelandmarks.npz --output_dir /path/to/outputs
54
  ```
55
 
@@ -58,7 +58,7 @@ python -m monai.bundle run training --meta_file configs/metadata.json --config_f
58
  The included `inference.json` script will run inference on a directory containing Nifti files whose images have shape `(256, 256, 1, N)` for `N` timesteps. For each image the output in the `output_dir` directory will be a npy file containing a result array of shape `(N, 2, 10)` storing the 10 coordinates for each `N` timesteps. Invoking this script can be done as follows, assuming the current directory is the bundle directory:
59
 
60
  ```sh
61
- python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file "['configs/inference.json', 'configs/common.json']" \
62
  --bundle_root . --dataset_dir /path/to/data --output_dir /path/to/outputs
63
  ```
64
 
 
49
  The following command will train with the default NPZ filename `./valvelandmarks.npz`, assuming the current directory is the bundle directory:
50
 
51
  ```sh
52
+ python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json \
53
  --bundle_root . --dataset_file ./valvelandmarks.npz --output_dir /path/to/outputs
54
  ```
55
 
 
58
  The included `inference.json` script will run inference on a directory containing Nifti files whose images have shape `(256, 256, 1, N)` for `N` timesteps. For each image the output in the `output_dir` directory will be a npy file containing a result array of shape `(N, 2, 10)` storing the 10 coordinates for each `N` timesteps. Invoking this script can be done as follows, assuming the current directory is the bundle directory:
59
 
60
  ```sh
61
+ python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json \
62
  --bundle_root . --dataset_dir /path/to/data --output_dir /path/to/outputs
63
  ```
64
 
configs/metadata.json CHANGED
@@ -1,7 +1,8 @@
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220729.json",
3
- "version": "0.4.2",
4
  "changelog": {
 
5
  "0.4.2": "add name tag",
6
  "0.4.1": "modify dataset key name",
7
  "0.4.0": "update license files",
 
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220729.json",
3
+ "version": "0.4.3",
4
  "changelog": {
5
+ "0.4.3": "README.md fix",
6
  "0.4.2": "add name tag",
7
  "0.4.1": "modify dataset key name",
8
  "0.4.0": "update license files",
docs/README.md CHANGED
@@ -42,7 +42,7 @@ The dataset used for training unfortunately cannot be made public, however the t
42
  The following command will train with the default NPZ filename `./valvelandmarks.npz`, assuming the current directory is the bundle directory:
43
 
44
  ```sh
45
- python -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json', 'configs/common.json']" \
46
  --bundle_root . --dataset_file ./valvelandmarks.npz --output_dir /path/to/outputs
47
  ```
48
 
@@ -51,7 +51,7 @@ python -m monai.bundle run training --meta_file configs/metadata.json --config_f
51
  The included `inference.json` script will run inference on a directory containing Nifti files whose images have shape `(256, 256, 1, N)` for `N` timesteps. For each image the output in the `output_dir` directory will be a npy file containing a result array of shape `(N, 2, 10)` storing the 10 coordinates for each `N` timesteps. Invoking this script can be done as follows, assuming the current directory is the bundle directory:
52
 
53
  ```sh
54
- python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file "['configs/inference.json', 'configs/common.json']" \
55
  --bundle_root . --dataset_dir /path/to/data --output_dir /path/to/outputs
56
  ```
57
 
 
42
  The following command will train with the default NPZ filename `./valvelandmarks.npz`, assuming the current directory is the bundle directory:
43
 
44
  ```sh
45
+ python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json \
46
  --bundle_root . --dataset_file ./valvelandmarks.npz --output_dir /path/to/outputs
47
  ```
48
 
 
51
  The included `inference.json` script will run inference on a directory containing Nifti files whose images have shape `(256, 256, 1, N)` for `N` timesteps. For each image the output in the `output_dir` directory will be a npy file containing a result array of shape `(N, 2, 10)` storing the 10 coordinates for each `N` timesteps. Invoking this script can be done as follows, assuming the current directory is the bundle directory:
52
 
53
  ```sh
54
+ python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json \
55
  --bundle_root . --dataset_dir /path/to/data --output_dir /path/to/outputs
56
  ```
57