Update README.md
Browse files
README.md
CHANGED
@@ -1,9 +1,33 @@
|
|
1 |
---
|
|
|
|
|
2 |
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
-
## Training procedure
|
5 |
|
6 |
-
|
7 |
|
|
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
datasets:
|
3 |
+
- sahil2801/CodeAlpaca-20k
|
4 |
library_name: peft
|
5 |
+
tags:
|
6 |
+
- codellama7b
|
7 |
+
- code
|
8 |
+
- instruct
|
9 |
+
- instruct-code
|
10 |
+
- code-alpaca
|
11 |
+
- alpaca-instruct
|
12 |
+
- alpaca
|
13 |
+
- codellama7b
|
14 |
+
- gpt2
|
15 |
---
|
|
|
16 |
|
17 |
+
We finetuned CodeLlama7B on Code-Alpaca-Instruct Dataset (sahil2801/CodeAlpaca-20k) for 5 epochs or ~ 25,000 steps using [MonsterAPI](https://monsterapi.ai) no-code [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm).
|
18 |
|
19 |
+
This dataset is HuggingFaceH4/CodeAlpaca_20K unfiltered, removing 36 instances of blatant alignment.
|
20 |
|
21 |
+
The finetuning session got completed in 4 hours and costed us only `$16` for the entire finetuning run!
|
22 |
+
|
23 |
+
#### Hyperparameters & Run details:
|
24 |
+
- Model Path: meta-llama/CodeLlama7B
|
25 |
+
- Dataset: sahil2801/CodeAlpaca-20k
|
26 |
+
- Learning rate: 0.0003
|
27 |
+
- Number of epochs: 5
|
28 |
+
- Data split: Training: 90% / Validation: 10%
|
29 |
+
- Gradient accumulation steps: 1
|
30 |
+
|
31 |
+
---
|
32 |
+
license: apache-2.0
|
33 |
+
---
|