--- library_name: peft tags: - code - instruct - gpt2 datasets: - HuggingFaceH4/no_robots base_model: gpt2 license: apache-2.0 --- ### Finetuning Overview: **Model Used:** gpt2 **Dataset:** HuggingFaceH4/no_robots #### Dataset Insights: [No Robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better. #### Finetuning Details: With the utilization of [MonsterAPI](https://monsterapi.ai)'s [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm), this finetuning: - Was achieved with great cost-effectiveness. - Completed in a total duration of 3mins 40s for 1 epoch using an A6000 48GB GPU. - Costed `$0.101` for the entire epoch. #### Hyperparameters & Additional Details: - **Epochs:** 1 - **Cost Per Epoch:** $0.101 - **Total Finetuning Cost:** $0.101 - **Model Path:** gpt2 - **Learning Rate:** 0.0002 - **Data Split:** 99% train 1% validation - **Gradient Accumulation Steps:** 4 - **lora r:** 32 - **lora alpha:** 64 --- Prompt Structure ``` ### INSTRUCTION: [instruction] ### RESPONSE: [output] ``` Training loss : ![training loss](https://cdn-uploads.huggingface.co/production/uploads/63ba46aa0a9866b28cb19a14/1iJWZwrORvuXmqRTq90qv.png) license: apache-2.0