Zangs3011 commited on
Commit
97193c0
1 Parent(s): 6b2351c

Upload 2 files

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. README.md +72 -0
  3. train-loss.png +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ train-loss.png filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ tags:
4
+ - meta-llama
5
+ - code
6
+ - instruct
7
+ - databricks-dolly-15k
8
+ - Llama-2-70b-hf
9
+ datasets:
10
+ - databricks/databricks-dolly-15k
11
+ base_model: meta-llama/Llama-2-70b-hf
12
+ ---
13
+
14
+ Note: This repo contains the base weights already merged with lora, pls check qblocks/llama2_70B_dolly15k repo for LORA adapters only
15
+
16
+
17
+ ### Finetuning Overview:
18
+
19
+ **Model Used:** meta-llama/Llama-2-70b-hf
20
+ **Dataset:** Databricks-dolly-15k
21
+
22
+ #### Dataset Insights:
23
+
24
+ The Databricks-dolly-15k dataset is an impressive compilation of over 15,000 records, made possible by the hard work and dedication of a multitude of Databricks professionals. It has been tailored to:
25
+
26
+ - Elevate the interactive capabilities of ChatGPT-like systems.
27
+ - Provide prompt/response pairs spanning eight distinct instruction categories, inclusive of the seven categories from the InstructGPT paper and an exploratory open-ended category.
28
+ - Ensure genuine and original content, largely offline-sourced with exceptions for Wikipedia in particular categories, and free from generative AI influences.
29
+
30
+ The contributors had the opportunity to rephrase and answer queries from their peers, highlighting a focus on accuracy and clarity. Additionally, some data subsets feature Wikipedia-sourced reference texts, marked by bracketed citation numbers like [42].
31
+
32
+ #### Finetuning Details:
33
+
34
+ Using [MonsterAPI](https://monsterapi.ai)'s user-friendly [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm), the finetuning:
35
+
36
+ - Stands out for its cost-effectiveness.
37
+ - Was executed in a total of 17.5 hours for 3 epochs with an A100 80GB GPU.
38
+ - Broke down to just 5.8 hours and `$19.25` per epoch, culminating in a combined cost of `$57.75` for all epochs.
39
+
40
+ #### Hyperparameters & Additional Details:
41
+
42
+ - **Epochs:** 3
43
+ - **Cost Per Epoch:** $19.25
44
+ - **Total Finetuning Cost:** $57.75
45
+ - **Model Path:** meta-llama/Llama-2-70b-hf
46
+ - **Learning Rate:** 0.0002
47
+ - **Data Split:** Training 90% / Validation 10%
48
+ - **Gradient Accumulation Steps:** 4
49
+
50
+ ---
51
+
52
+ ### Prompt Structure:
53
+
54
+
55
+ ```
56
+ ### INSTRUCTION:
57
+ [instruction]
58
+
59
+ [context]
60
+
61
+ ### RESPONSE:
62
+ [response]
63
+ ```
64
+
65
+ Loss metrics
66
+
67
+ Training loss (Blue) Validation Loss (orange):
68
+ ![training loss](train-loss.png "Training loss")
69
+
70
+ ---
71
+
72
+ license: apache-2.0
train-loss.png ADDED

Git LFS Details

  • SHA256: 96de8bbfa4d9abe16fc72164ad21a6fc39c9d7f5886cbe5c490c2175d0da2e95
  • Pointer size: 132 Bytes
  • Size of remote file: 1.36 MB