mor40 commited on
Commit
79a4ca2
1 Parent(s): 1b60508

Training complete

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mor40/BulBERT-chitanka-model
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - bgglue
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: BulBERT-ner-udep-5epochs
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: bgglue
20
+ type: bgglue
21
+ config: udep
22
+ split: validation
23
+ args: udep
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.975273754856941
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.975273754856941
31
+ - name: F1
32
+ type: f1
33
+ value: 0.975273754856941
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9777743637015415
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # BulBERT-ner-udep-5epochs
43
+
44
+ This model is a fine-tuned version of [mor40/BulBERT-chitanka-model](https://huggingface.co/mor40/BulBERT-chitanka-model) on the bgglue dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.1089
47
+ - Precision: 0.9753
48
+ - Recall: 0.9753
49
+ - F1: 0.9753
50
+ - Accuracy: 0.9778
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 5
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.1134 | 1.0 | 1114 | 0.0996 | 0.9674 | 0.9673 | 0.9673 | 0.9721 |
82
+ | 0.0578 | 2.0 | 2228 | 0.0933 | 0.9728 | 0.9722 | 0.9725 | 0.9760 |
83
+ | 0.0321 | 3.0 | 3342 | 0.0993 | 0.9739 | 0.9746 | 0.9743 | 0.9769 |
84
+ | 0.0178 | 4.0 | 4456 | 0.1054 | 0.9746 | 0.9750 | 0.9748 | 0.9776 |
85
+ | 0.0096 | 5.0 | 5570 | 0.1089 | 0.9753 | 0.9753 | 0.9753 | 0.9778 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.34.0
91
+ - Pytorch 2.0.1+cu118
92
+ - Datasets 2.14.5
93
+ - Tokenizers 0.14.1