--- base_model: mor40/BulBERT-chitanka-model tags: - generated_from_trainer datasets: - bgglue metrics: - precision - recall - f1 - accuracy model-index: - name: BulBERT-ner-udep-5epochs results: - task: name: Token Classification type: token-classification dataset: name: bgglue type: bgglue config: udep split: validation args: udep metrics: - name: Precision type: precision value: 0.975273754856941 - name: Recall type: recall value: 0.975273754856941 - name: F1 type: f1 value: 0.975273754856941 - name: Accuracy type: accuracy value: 0.9777743637015415 --- # BulBERT-ner-udep-5epochs This model is a fine-tuned version of [mor40/BulBERT-chitanka-model](https://huggingface.co/mor40/BulBERT-chitanka-model) on the bgglue dataset. It achieves the following results on the evaluation set: - Loss: 0.1089 - Precision: 0.9753 - Recall: 0.9753 - F1: 0.9753 - Accuracy: 0.9778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1134 | 1.0 | 1114 | 0.0996 | 0.9674 | 0.9673 | 0.9673 | 0.9721 | | 0.0578 | 2.0 | 2228 | 0.0933 | 0.9728 | 0.9722 | 0.9725 | 0.9760 | | 0.0321 | 3.0 | 3342 | 0.0993 | 0.9739 | 0.9746 | 0.9743 | 0.9769 | | 0.0178 | 4.0 | 4456 | 0.1054 | 0.9746 | 0.9750 | 0.9748 | 0.9776 | | 0.0096 | 5.0 | 5570 | 0.1089 | 0.9753 | 0.9753 | 0.9753 | 0.9778 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1