Moreno La Quatra commited on
Commit
ef2e4e4
1 Parent(s): d0b5b30

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: distilbert-base-cased-emotion
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # distilbert-base-cased-emotion
19
+
20
+ This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1771
23
+ - Accuracy: 0.9265
24
+ - F1: 0.9263
25
+ - Precision: 0.9276
26
+ - Recall: 0.9265
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 32
47
+ - eval_batch_size: 32
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_steps: 500
52
+ - num_epochs: 10
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
59
+ | 0.2633 | 1.0 | 500 | 0.2505 | 0.917 | 0.9174 | 0.9183 | 0.917 |
60
+ | 0.1815 | 2.0 | 1000 | 0.1921 | 0.9305 | 0.9304 | 0.9329 | 0.9305 |
61
+ | 0.1224 | 3.0 | 1500 | 0.1721 | 0.9355 | 0.9361 | 0.9388 | 0.9355 |
62
+ | 0.093 | 4.0 | 2000 | 0.1712 | 0.9365 | 0.9359 | 0.9367 | 0.9365 |
63
+ | 0.0782 | 5.0 | 2500 | 0.2116 | 0.9275 | 0.9271 | 0.9272 | 0.9275 |
64
+ | 0.0548 | 6.0 | 3000 | 0.2353 | 0.936 | 0.9348 | 0.9362 | 0.936 |
65
+ | 0.0358 | 7.0 | 3500 | 0.2729 | 0.9325 | 0.9331 | 0.9345 | 0.9325 |
66
+ | 0.0185 | 8.0 | 4000 | 0.3059 | 0.9325 | 0.9323 | 0.9322 | 0.9325 |
67
+ | 0.0124 | 9.0 | 4500 | 0.3103 | 0.9325 | 0.9325 | 0.9325 | 0.9325 |
68
+ | 0.0137 | 10.0 | 5000 | 0.3161 | 0.9305 | 0.9303 | 0.9303 | 0.9305 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.22.1
74
+ - Pytorch 1.11.0+cu113
75
+ - Datasets 2.0.0
76
+ - Tokenizers 0.11.6