File size: 2,864 Bytes
ea0cfe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-cased-finetuned-ner_0301_J_DATA
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-cased-finetuned-ner_0301_J_DATA

This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0356
- Precision: 0.9588
- Recall: 0.9664
- F1: 0.9626
- Accuracy: 0.9933

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2272        | 1.0   | 705   | 0.0711          | 0.8795    | 0.9249 | 0.9016 | 0.9777   |
| 0.0551        | 2.0   | 1410  | 0.0439          | 0.9222    | 0.9563 | 0.9389 | 0.9878   |
| 0.0253        | 3.0   | 2115  | 0.0397          | 0.9312    | 0.9563 | 0.9436 | 0.9898   |
| 0.0277        | 4.0   | 2820  | 0.0500          | 0.9492    | 0.9641 | 0.9566 | 0.9898   |
| 0.018         | 5.0   | 3525  | 0.0414          | 0.9524    | 0.9652 | 0.9588 | 0.9902   |
| 0.0154        | 6.0   | 4230  | 0.0383          | 0.9397    | 0.9608 | 0.9501 | 0.9892   |
| 0.0133        | 7.0   | 4935  | 0.0454          | 0.9408    | 0.9619 | 0.9512 | 0.9888   |
| 0.0073        | 8.0   | 5640  | 0.0343          | 0.9496    | 0.9709 | 0.9601 | 0.9917   |
| 0.0071        | 9.0   | 6345  | 0.0295          | 0.9524    | 0.9652 | 0.9588 | 0.9923   |
| 0.0053        | 10.0  | 7050  | 0.0307          | 0.9449    | 0.9619 | 0.9533 | 0.9929   |
| 0.0048        | 11.0  | 7755  | 0.0221          | 0.9304    | 0.9585 | 0.9442 | 0.9935   |
| 0.0022        | 12.0  | 8460  | 0.0338          | 0.9450    | 0.9630 | 0.9539 | 0.9923   |
| 0.0024        | 13.0  | 9165  | 0.0263          | 0.9578    | 0.9675 | 0.9626 | 0.9938   |
| 0.0017        | 14.0  | 9870  | 0.0345          | 0.9547    | 0.9697 | 0.9622 | 0.9935   |
| 0.0016        | 15.0  | 10575 | 0.0356          | 0.9588    | 0.9664 | 0.9626 | 0.9933   |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.13.0+cu117
- Datasets 2.8.0
- Tokenizers 0.12.1