--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner_0220_J_ORIDATA results: [] --- # distilbert-base-uncased-finetuned-ner_0220_J_ORIDATA This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4949 - Precision: 0.8987 - Recall: 0.9551 - F1: 0.9260 - Accuracy: 0.9437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 111 | 0.2996 | 0.7246 | 0.8407 | 0.7783 | 0.9295 | | No log | 2.0 | 222 | 0.2545 | 0.8067 | 0.8983 | 0.8500 | 0.9343 | | No log | 3.0 | 333 | 0.2398 | 0.8649 | 0.9280 | 0.8953 | 0.9445 | | No log | 4.0 | 444 | 0.2326 | 0.8651 | 0.9297 | 0.8962 | 0.9459 | | 0.329 | 5.0 | 555 | 0.2200 | 0.8836 | 0.9263 | 0.9044 | 0.9459 | | 0.329 | 6.0 | 666 | 0.2382 | 0.8365 | 0.9280 | 0.8799 | 0.9315 | | 0.329 | 7.0 | 777 | 0.2349 | 0.8775 | 0.9347 | 0.9052 | 0.9395 | | 0.329 | 8.0 | 888 | 0.2604 | 0.8832 | 0.9424 | 0.9118 | 0.9415 | | 0.329 | 9.0 | 999 | 0.2705 | 0.8929 | 0.9331 | 0.9126 | 0.9483 | | 0.124 | 10.0 | 1110 | 0.2986 | 0.8731 | 0.9390 | 0.9049 | 0.9410 | | 0.124 | 11.0 | 1221 | 0.2960 | 0.8805 | 0.9432 | 0.9108 | 0.9441 | | 0.124 | 12.0 | 1332 | 0.2798 | 0.8778 | 0.9373 | 0.9066 | 0.9401 | | 0.124 | 13.0 | 1443 | 0.3364 | 0.8851 | 0.9534 | 0.9180 | 0.9422 | | 0.0735 | 14.0 | 1554 | 0.3546 | 0.8943 | 0.9534 | 0.9229 | 0.9425 | | 0.0735 | 15.0 | 1665 | 0.3449 | 0.8917 | 0.9492 | 0.9195 | 0.9443 | | 0.0735 | 16.0 | 1776 | 0.3789 | 0.8817 | 0.9407 | 0.9102 | 0.9381 | | 0.0735 | 17.0 | 1887 | 0.3727 | 0.8803 | 0.9407 | 0.9095 | 0.9443 | | 0.0735 | 18.0 | 1998 | 0.3633 | 0.8841 | 0.9373 | 0.9099 | 0.9387 | | 0.0453 | 19.0 | 2109 | 0.4279 | 0.8816 | 0.9398 | 0.9098 | 0.9328 | | 0.0453 | 20.0 | 2220 | 0.4055 | 0.8939 | 0.95 | 0.9211 | 0.9431 | | 0.0453 | 21.0 | 2331 | 0.4138 | 0.8924 | 0.9492 | 0.9199 | 0.9441 | | 0.0453 | 22.0 | 2442 | 0.4275 | 0.8948 | 0.9441 | 0.9188 | 0.9422 | | 0.0283 | 23.0 | 2553 | 0.4319 | 0.8955 | 0.9508 | 0.9223 | 0.9418 | | 0.0283 | 24.0 | 2664 | 0.4179 | 0.8878 | 0.9525 | 0.9191 | 0.9464 | | 0.0283 | 25.0 | 2775 | 0.4341 | 0.8937 | 0.9407 | 0.9166 | 0.9420 | | 0.0283 | 26.0 | 2886 | 0.4420 | 0.9063 | 0.9508 | 0.9280 | 0.9439 | | 0.0283 | 27.0 | 2997 | 0.4370 | 0.8986 | 0.9466 | 0.9220 | 0.9432 | | 0.0188 | 28.0 | 3108 | 0.4557 | 0.8953 | 0.9492 | 0.9214 | 0.9430 | | 0.0188 | 29.0 | 3219 | 0.4458 | 0.8934 | 0.9449 | 0.9185 | 0.9437 | | 0.0188 | 30.0 | 3330 | 0.4461 | 0.8973 | 0.9475 | 0.9217 | 0.9425 | | 0.0188 | 31.0 | 3441 | 0.4638 | 0.9014 | 0.9525 | 0.9262 | 0.9426 | | 0.0132 | 32.0 | 3552 | 0.4732 | 0.9029 | 0.9534 | 0.9275 | 0.9437 | | 0.0132 | 33.0 | 3663 | 0.4645 | 0.9062 | 0.9576 | 0.9312 | 0.9453 | | 0.0132 | 34.0 | 3774 | 0.4542 | 0.8981 | 0.9483 | 0.9225 | 0.9447 | | 0.0132 | 35.0 | 3885 | 0.4702 | 0.8974 | 0.9492 | 0.9226 | 0.9431 | | 0.0132 | 36.0 | 3996 | 0.4824 | 0.9081 | 0.9542 | 0.9306 | 0.9428 | | 0.0101 | 37.0 | 4107 | 0.4757 | 0.8978 | 0.9534 | 0.9248 | 0.9442 | | 0.0101 | 38.0 | 4218 | 0.4750 | 0.8971 | 0.9534 | 0.9244 | 0.9453 | | 0.0101 | 39.0 | 4329 | 0.4843 | 0.9008 | 0.9542 | 0.9267 | 0.9446 | | 0.0101 | 40.0 | 4440 | 0.4840 | 0.9019 | 0.9585 | 0.9293 | 0.9464 | | 0.0077 | 41.0 | 4551 | 0.4852 | 0.8939 | 0.9492 | 0.9207 | 0.9436 | | 0.0077 | 42.0 | 4662 | 0.4864 | 0.9051 | 0.9542 | 0.9290 | 0.9447 | | 0.0077 | 43.0 | 4773 | 0.4801 | 0.9010 | 0.9559 | 0.9276 | 0.9431 | | 0.0077 | 44.0 | 4884 | 0.4887 | 0.9016 | 0.9551 | 0.9276 | 0.9435 | | 0.0077 | 45.0 | 4995 | 0.4973 | 0.8972 | 0.9542 | 0.9248 | 0.9430 | | 0.0065 | 46.0 | 5106 | 0.4942 | 0.9 | 0.9534 | 0.9259 | 0.9436 | | 0.0065 | 47.0 | 5217 | 0.4933 | 0.9007 | 0.9534 | 0.9263 | 0.9436 | | 0.0065 | 48.0 | 5328 | 0.4979 | 0.8987 | 0.9551 | 0.9260 | 0.9434 | | 0.0065 | 49.0 | 5439 | 0.4966 | 0.9009 | 0.9551 | 0.9272 | 0.9434 | | 0.0059 | 50.0 | 5550 | 0.4949 | 0.8987 | 0.9551 | 0.9260 | 0.9437 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.13.0+cu117 - Datasets 2.8.0 - Tokenizers 0.12.1