|
import torch |
|
import torch.nn.functional as F |
|
|
|
class LPLayerNorm(torch.nn.LayerNorm): |
|
def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None): |
|
super().__init__( |
|
normalized_shape=normalized_shape, |
|
eps=eps, |
|
elementwise_affine=elementwise_affine, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
|
|
def forward(self, x): |
|
module_device = x.device |
|
downcast_x = _cast_if_autocast_enabled(x) |
|
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight |
|
downcast_bias = _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias |
|
with torch.autocast(enabled=False, device_type=module_device.type): |
|
return F.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps) |
|
|
|
def _cast_if_autocast_enabled(tensor): |
|
if torch.is_autocast_enabled(): |
|
if tensor.device.type == 'cuda': |
|
dtype = torch.get_autocast_gpu_dtype() |
|
elif tensor.device.type == 'cpu': |
|
dtype = torch.get_autocast_cpu_dtype() |
|
else: |
|
raise NotImplementedError() |
|
return tensor.to(dtype=dtype) |
|
return tensor |