kartikmosaicml commited on
Commit
5a1cae6
1 Parent(s): 9a14fb7

Create README.md with model card.

Browse files
Files changed (1) hide show
  1. README.md +212 -0
README.md ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-3.0
3
+ datasets:
4
+ - competition_math
5
+ - conceptofmind/cot_submix_original/cot_gsm8k
6
+ - knkarthick/dialogsum
7
+ - mosaicml/dolly_hhrlhf
8
+ - duorc
9
+ - tau/scrolls/qasper
10
+ - emozilla/quality
11
+ - scrolls/summ_screen_fd
12
+ - spider
13
+ tags:
14
+ - Composer
15
+ - MosaicML
16
+ - llm-foundry
17
+ inference: false
18
+ ---
19
+
20
+ # MPT-30B-Instruct
21
+
22
+ MPT-30B-Instruct is a model for short-form instruction following.
23
+ It is built by finetuning [MPT-30B](https://huggingface.co/mosaicml/mpt-30b) on [Dolly HHRLHF](https://huggingface.co/datasets/mosaicml/dolly_hhrlhf) derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets. It is also trained on [Competition Math](https://huggingface.co/datasets/competition_math), [Duorc](https://huggingface.co/datasets/duorc), [CoT GSM8k](https://huggingface.co/datasets/conceptofmind/cot_submix_original), [Qasper](https://huggingface.co/datasets/allenai/qasper), [Quality](https://huggingface.co/datasets/emozilla/quality), [Summ Screen FD](https://huggingface.co/datasets/tau/scrolls) and [Spider](https://huggingface.co/datasets/spider).
24
+ * License: _CC-By-SA-3.0_
25
+ * [Demo on Hugging Face Spaces](https://huggingface.co/spaces/mosaicml/mpt-30b-instruct)
26
+
27
+
28
+ This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture.
29
+
30
+ ## Model Date
31
+
32
+ June 22, 2023
33
+
34
+ ## Model License
35
+
36
+ CC-By-SA-3.0
37
+
38
+ ## Documentation
39
+
40
+ * [Blog post: Introducing MPT-30B: Raising the bar for open-source commercial foundation models](https://www.mosaicml.com/blog/mpt-30b)
41
+ * [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
42
+ * Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)!
43
+
44
+ ### Example Question/Instruction
45
+
46
+ **Bespokenizer**:
47
+ > What is a quoll?
48
+
49
+ **MPT-30B-Instruct**:
50
+ TBD (update these)
51
+ >A Quoll (pronounced “cool”) is one of Australia’s native carnivorous marsupial mammals, which are also known as macropods or wallabies in other parts around Asia and South America
52
+
53
+ ## How to Use
54
+
55
+ Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package.
56
+
57
+ It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more.
58
+
59
+ ```python
60
+ import transformers
61
+ model = transformers.AutoModelForCausalLM.from_pretrained(
62
+ 'mosaicml/mpt-30b-instruct',
63
+ trust_remote_code=True
64
+ )
65
+ ```
66
+
67
+ To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision:
68
+ ```python
69
+ import torch
70
+ import transformers
71
+
72
+ name = 'mosaicml/mpt-30b-instruct'
73
+
74
+ config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
75
+ config.attn_config['attn_impl'] = 'torch' # change this to use triton
76
+ config.init_device = 'cpu' # For fast initialization directly on GPU! (if you have enough memory)
77
+
78
+ model = transformers.AutoModelForCausalLM.from_pretrained(
79
+ name,
80
+ config=config,
81
+ torch_dtype=torch.bfloat16, # Load model weights in bfloat16
82
+ trust_remote_code=True
83
+ )
84
+ ```
85
+
86
+ The model was trained first on 2048, and then an additional pre-training phase was included for sequence length adaptation to 8192. However, ALiBi further enables users to increase the maximum sequence length during finetuning and/or inference. For example:
87
+
88
+ ```python
89
+ import transformers
90
+
91
+ name = 'mosaicml/mpt-30b-instruct'
92
+
93
+ config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
94
+ config.max_seq_len = 16384 # (input + output) tokens can now be up to 16384
95
+
96
+ model = transformers.AutoModelForCausalLM.from_pretrained(
97
+ name,
98
+ config=config,
99
+ trust_remote_code=True
100
+ )
101
+ ```
102
+
103
+ This model was trained with the MPT-30B tokenizer which is based on the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer and includes additional padding and eos tokens.
104
+
105
+ ```python
106
+ from transformers import AutoTokenizer
107
+ tokenizer = AutoTokenizer.from_pretrained('mosaicml/mpt-30b')
108
+ ```
109
+
110
+ The model can then be used, for example, within a text-generation pipeline.
111
+ Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html).
112
+
113
+ ```python
114
+ from transformers import pipeline
115
+
116
+ with torch.autocast('cuda', dtype=torch.bfloat16):
117
+ inputs = tokenizer('Here is a recipe for vegan banana bread:\n', return_tensors="pt").to('cuda')
118
+ outputs = model.generate(**inputs, max_new_tokens=100)
119
+ print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
120
+
121
+ # or using the HF pipeline
122
+ pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
123
+ with torch.autocast('cuda', dtype=torch.bfloat16):
124
+ print(
125
+ pipe('Here is a recipe for vegan banana bread:\n',
126
+ max_new_tokens=100,
127
+ do_sample=True,
128
+ use_cache=True))
129
+ ```
130
+
131
+ ### Formatting
132
+
133
+ This model was trained on data formatted as follows:
134
+
135
+ ```python
136
+ def format_prompt(instruction):
137
+ template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n###Instruction\n{instruction}\n\n### Response\n"
138
+ return template.format(instruction=instruction)
139
+ )
140
+
141
+ example = "Tell me a funny joke.\nDon't make it too funny though."
142
+ fmt_ex = format_prompt(instruction=example)
143
+ ```
144
+
145
+ In the above example, `fmt_ex` is ready to be tokenized and sent through the model.
146
+
147
+ ## Model Description
148
+
149
+ The architecture is a modification of a standard decoder-only transformer.
150
+
151
+ The model has been modified from a standard transformer in the following ways:
152
+ * It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf)
153
+ * It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings
154
+ * It does not use biases
155
+
156
+
157
+ | Hyperparameter | Value |
158
+ |----------------|-------|
159
+ |n_parameters | 29.95B |
160
+ |n_layers | 48 |
161
+ | n_heads | 64 |
162
+ | d_model | 7168 |
163
+ | vocab size | 50432 |
164
+ | sequence length | 8192 |
165
+
166
+ ## PreTraining Data
167
+
168
+ For more details on the pretraining process, see [MPT-30B](https://huggingface.co/mosaicml/mpt-30b).
169
+
170
+ The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
171
+
172
+ ### Training Configuration
173
+
174
+ TODO: this needs to be changed
175
+ This model was trained using the [MosaicML Platform](https://www.mosaicml.com/platform).
176
+ The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the AdamW optimizer.
177
+
178
+ ## Limitations and Biases
179
+
180
+ _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
181
+
182
+ MPT-30B-Instruct can produce factually incorrect output, and should not be relied on to produce factually accurate information.
183
+ MPT-30B-Instruct was trained on various public datasets.
184
+ While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
185
+
186
+
187
+ ## Acknowledgements
188
+
189
+ This model was finetuned by Sam Havens and the MosaicML NLP team
190
+
191
+ ## MosaicML Platform
192
+
193
+ If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-30b).
194
+
195
+ ## Disclaimer
196
+
197
+ The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.
198
+
199
+ ## Citation
200
+
201
+ Please cite this model using the following format:
202
+
203
+ ```
204
+ @online{MosaicML2023Introducing,
205
+ author = {MosaicML NLP Team},
206
+ title = {Introducing MPT-30B: Raising the bar for open-source commercial foundation models},
207
+ year = {2023},
208
+ url = {www.mosaicml.com/blog/mpt-30b},
209
+ note = {Accessed: 2023-06-22},
210
+ urldate = {2023-06-22}
211
+ }
212
+ ```